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ON THE PLASTIC ZONE FORMATION
NEAR A CRACK IN ANISOTROPIC BODY
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ABSTRACT

The plastic zone near the Mode I crack tip in anisotropic body is studied. Considered is the
case of plane stress conditions. The linear tensor constitutive equations are used for the
problem formulation. The solving equations are written in terms of displacement vector. By
means of variable discretization they reduced to linear system of algebraic equations. The
solution of this system is found by modified method of unknowns consecutive reduction that
is generalized Gauss’s method.
As the result the relations of plastic zone formations is obtained. In particular, the
development characteristic of main plastic zone near the crack tip is studied. Also it is
observed that the second plastic zone forms on the body boundary. The junction manner of
the both plastic zones into one plastic zone is studied. The influence of crack length on size
and shape of the plastic zone is shown.

Key words: anisotropic body, crack, plastic zone.

1. INTRODUCTION

Various crack models are widely used in mechanics of elastoplastic fracture. To state these
models it is necessary to know sizes and form of the crack tip plastic zone. Therefore the
solution of corresponding boundary problems are needed. In works [1-3] were founded (both
analytically and numerically)solutions of a number of boundary problems for plane and
antiplane strain conditions and also for the plane stress. However, all of its concern
particularly the plastic zone near the crack in isotropic body. For now the plastic zone near the
crack in anisotropic body is not studied enough. Only a few works is devoted to this problem
from which can be remarked the work [4]. Solutions of several boundary problems under the
plane strain condition were found in that work numerically.
This work is devoted to the study of the plastic zone near the crack tip in anisotropic body for
the case of plane stress condition.

2. FORMULATION AND SOLUTION OF BOUNDARY PROBLEM

The components of displacement vector u  are chosen as the main unknown variables.
Governing equations are derived using linear tensor constitutive equations relating the
components of stress tensor S  with the components of strain tensor D  in the form [5]:
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The components of anisotropy tensor F are determined from experimentally found relations
(in small region of initial state) of all components of strain tensor D  from each component of
stress tensor S .
If components of anisotropy tensor F can be expressed by two constants then in view of
Eq. (2) the Eq. (1) turn to Hencky – Nadai’s equations [6, 7].
Containing in Eq. (1) the invariants of stress tensor S  and strain tensor D  are related with
each other.
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In view of Eqs. (3) and (5) the Eq. (1) is written as
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If Eqs. (4) and (5) are valid the plasticity criterion has the form

.
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If components of anisotropy tensor F can be expressed by two constants then accounting
Eq. (2) the criterion (7) turns to Mises’s criterion [10].
It is meant that the body is orthotropic with main directions are parallel to the axis of
Cartesian coordinate system .,, 321 xxx
In case of plane stress condition
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On the basis of equilibrium equations, Eqs. (8), (6), and Cauchy’s relations it is obtained the
second order differential equations with partial coordinates 21 xx ,  derivations of the
displacement components 21 uu , :
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It is supposed that on body’s boundary are given both the stress vector P and the displacement
vector u*.
On the basis of boundary conditions written in components of stress vector P, Eqs. (8), (6),
and Cauchy’s relations it is obtained the first order differential equations with partial
coordinates 21 xx ,  derivations of displacement components 21 uu , :
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The Eqs. (9) and (10) can be integrated with Ilyushin’s method of consequent approximations
[11]. Thus for the first approximation the quantities 21 , QQ  and 21 , RR  must be set equal to
zero and for each following approximation they are calculated on the basis of the values of
components 21 uu ,  that where found at previous approximation step.
A rectangular body of small thickness containing a central crack is considered. The body
symmetry axes coincide with axes 21 xx , .
The components 21 , PP  is given on the bottom and upper crack surfaces as well as on the
body side surfaces. The components *

2
*
1 , uu  is given on the bottom and upper body surfaces.

The boundary conditions are symmetric with reference to axes 21 xx , . Thus it is possible to
consider only a quarter of the body (see fig. 1).
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Figure 1. Considered part of the body.

On the upper crack surface ( 01 21 =−= nn , ) the Eq. (10) has the form
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On the side body surface ( 10 21 == nn , ) the Eq. (10) has the form
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The Eqs. (9), (11) – (16) are resolving equations of components ., 21 uu
A plane grid of step h is created
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In view of Eq. (17) the coordinates 21 xx ,  partial derivations of components 21 uu ,  expressed
through finite-differences and on the basis of Eqs. (9), (11) – (16) it is derived n linear
algebraic equations ( )( )12 +−= fden  with unknowns :,...,1 nyy
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The solution of Eq. (18) is found with the method suggested in work [4].
The data of D16 alloy [5] is used.
The essential components of the anisotropy tensor F are
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The essential components of the anisotropy tensor G are
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The solution of the boundary problem is found for
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The values of unknown nyy ,...,1  are found for nine steps of consequent approximations.
Moreover, on the ninth step of the approximation the indexes i and j when the radical

2

− , that stands in the left part of criterion (7), gets grater or smaller then the constant

υ  are found. It allows to calculate the coordinates of the plastic zone boundary points.

3. RESULTS

The fig. 2 ),( mL 21042 −⋅= , fig. 3 ),( mL 21061 −⋅=  and the fig. 4 ),( mL 21080 −⋅= show the
plastic zone formation.
The curves shown in fig. 2 ( mL 21042 −⋅= , ) are given for the following values of

mxxu
ji

,),(* 621
1 10⋅ :

1 – 70, 2 – 80, 3 – 82, 4 – 84, 5 – 86, 6 – 88.
The plastic zone boundary for the case of plane strain condition and mxxu

ji

621
1 1070 −⋅=),(*

marked in the figure by dashed line [4].
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Figure 2. Plastic zone formation for mL 21042 −⋅= , .

It should be noted that in comparison with the case of plane strain condition the main plastic
zone near the crack tip under plane stress condition and mxxu

ji

621
1 1070 −⋅=),(*  suffers some

changes. Really, it significantly moves in 2x - axis direction and increases in sizes. So its
length in 2x - axis direction increases in more then two times. The further behavior of the
plastic zone remains without changes. Indeed, as the body elongates it expands and declines
to the side surface of the body. For some value of the component ),(* 21

1 ji
xxu , that more then

m61080 −⋅  and less then m61082 −⋅ , the additional plastic zone appears on the side surface of
the body. It locates in the region of the point ( mxmx 22

152

21

70
1000310361 −− ⋅=⋅= ,,, ). The

further body elongation leads to the expansion of both plastic zones and its joint creating one
plastic zone. It is observed the further expansion of the joint plastic zone. It should be noted
that its form near the body side surface does change essentially.
The curves shown in fig. 3 ( mL 21061 −⋅= , ) are given for the following values of

mxxu
ji

,),(* 621
1 10⋅ :

1 – 70, 2 – 80, 3 – 88, 4 – 89, 5 – 90, 6 – 91, 7 - 92.

Figure 3. Plastic zone formation for mL 21061 −⋅= , .
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It is noticed that the main plastic zone arising near the crack tip for mxxu
ji

621
1 1070 −⋅=),(*

gets considerably smaller.
As above with the body elongating, the main plastic zone expands and declines to the side
surface of the body. For some value of the component ),(* 21

1 ji
xxu , that more then m61088 −⋅

and less then m61089 −⋅ , the additional plastic zone appears on the side surface of the body. It
locates at the vicinity of the point ( mxmx 22

152

21

78
1000310521 −− ⋅=⋅= ,,, ). The further body

elongation leads to the expansion of both plastic zones and its joint creating one plastic zone.
The further expansion of the joint plastic zone is observed. It is interesting that its form near
the body side surface also does change essentially.
The curves shown in fig. 4 ( mL 21080 −⋅= , ) are given for the next values of

mxxu
ji

,),(* 621
1 10⋅ :

1 – 70, 2 – 80, 3 – 90, 4 – 92, 5 – 93, 6 – 94, 7 – 95, 8 - 96.
It is noticed that the main plastic zone arising near the crack tip for mxxu

ji

621
1 1070 −⋅=),(*

gets yet more smaller.
As the component ),(* 21

1 ji
xxu  increases, the main plastic zone expands and declines to the

side surface of the body weaker. For some value of the component ),(* 21
1 ji

xxu , that more then

m61094 −⋅  and less then m61095 −⋅ , the additional plastic zone appears on the side surface of
the body. It locates in the region of the point ( mxmx 22

152

21

75
1000310461 −− ⋅=⋅= ,,, ). The

further body elongation leads to the expansion of both plastic zones and its joint creating one
plastic zone. The further expansion of the joint plastic zone is observed. It is important that its
form near the body side surface does not change essentially.

Figure 4. Plastic zone formation for mL 21080 −⋅= , .
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It is unsuspected that the point in which region an additional plastic zone arises weakly
depends on the crack length L. Moreover with decreasing of the crack length L from

m21042 −⋅,  to m21061 −⋅,  the coordinate 1

i
x  of the point does increase from m210361 −⋅,  to

m210521 −⋅, , and with decreasing of the crack length L from m21061 −⋅,  to m21080 −⋅,  it
does decrease from m210521 −⋅,  to m210461 −⋅, .

4. CONCLUSIONS

Studied the influence of a Mode I crack length on the plastic zone formation with stiff loading
of the body and under plane stress conditions. It was obtained that the crack length decreasing
leads to the essential diminishing of the plastic zone near the crack tip and to the later
appearance of additional plastic zone on the body side surface.
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