ÖZELLİKLERİ FONKSİYONEL OLARAK DEĞİŞEN MALZEMELERDE KARIŞIK MOD YÜKLEME ALTINDA ÇATLAK BAŞLAMA AÇILARI VE GERİLİM ŞİDDET ÇARPANLARI

Alpay ORAL, İbrahim Hakan ÇOPUR ve Günay ANLAŞ

Boğaziçi Üniversitesi, Makina Mühendisliği Bölümü, Bebek, İstanbul, Türkiye

ÖZET

FGM (Functionally Graded Material - Özellikleri Fonksiyonel Olarak Değişen Malzeme) mekanik özellikleri bir noktadan diğer bir noktaya sürekli değişen, heterojen özel bir malzeme tipidir. Bu çalışmada, statik karışık mod yükleme altındaki çatlaklı FGM plaklarda çatlak başlama açıları ve gerilim şiddet çarpanları sonlu elemanlar metodu kullanılarak hesaplanmıştır. Çatlak başlama açıları Genelleştirilmiş Maksimum Teğet Gerilim (GMTG) metodu, gerilim şiddet çarpanları ise mod ayırma ve J(0) metotları (J integralinin özel bir uygulaması) kullanılarak bulunmuştur. *T*-gerilimi ve r_c gibi parametreler ayrıca tartışılmış, çatlak boyu, malzeme özelliği değişimi ve mod karışımının gerilim şiddet çarpanı ve çatlak ilerleme açıları üzerine etkileri incelenmiştir.

Anahtar kelimeler: Çatlak başlama açıları, FGM (Functionally Graded Material - Özellikleri Fonksiyonel Olarak Değişen Malzeme), Gerilim şiddet çarpanları, T-gerilimi.

CRACK INITIATION ANGLES AND STRESS INTENSITY FACTORS IN FUNCTIONALLY GRADED MATERIALS UNDER MIXED MODE LOADING

ABSTRACT

FGM (Functionally Graded Material) is a type of nonhomogeneous material that exhibits a continuous variation of mechanical properties from one point to another. In this study, crack initiation angles and stress intensity factors are evaluated under static mixed mode loading in cracked FGM plates using finite element method. Crack initiation angles are obtained using Generalized Maximum Tangential Stress (GMTS) method, and stress intensity factors are obtained using mode extraction and J(0) (a special J integral approach). Parameters such as *T*-stress and r_c are discussed and the effects of crack length, material property variation and mode mixity are studied.

Keywords: Crack initiation angles, FGM (Functionally Graded Material), Stress intensity factors, T-stress.

1. GİRİŞ

Metal ve seramiklerin beraber kullanıldığı yüksek sıcaklık uygulamalarında, metalin yüksek sıcaklıktaki aşınma ve oksitlenme problemi, seramiğin de düşük tokluğu yeni malzeme arayışlarına neden olmuştur. Metal-seramik kompozitler, bu malzemelerde katmanlar

arasındaki süreksizlik nedeniyle oluşan yüksek ısıl ve artık gerilimlerden dolayı teknolojinin talep ettiği tasarımlara istenilen düzeyde cevap verememiştir. Yakın geçmişte metalin tokluk özelliğini, seramiklerin de yüksek ısıya dayanma gücünü kullanma fikrinden FGM'ler (Functionally Graded Material - Özellikleri Fonksiyonel Olarak Değişen Malzeme) ortaya çıkmıştır. Bu malzeme tipi iki veya daha fazla malzemenin belli bir hacimsel oranda birbirleriyle karıştırılması ile üretilir. Karışımın malzeme özellikleri malzemenin boyutları boyunca bir fonksiyona bağlı olarak sürekli değişir.

FGM'lerin malzeme özelliklerinin sürekli değişimi, bir çatlağın oluşmasını sağlayacak ara yüzeyler veya yüksek ısıl ve artık gerilimler oluşmasına yol açacak süreksizlikler içermemesi, onları farklı uygulamalarda tercih edilen ideal malzemeler haline getirmiştir. Ancak bu tip yeni malzemelerin kırılma mekaniği davranışının çalışılmasına ihtiyaç vardır. Kırılma mekaniğinde önemli bir konu, malzemede oluşan bir çatlağın nasıl bir yol izleyerek ilerleyeceğidir. Bunun incelenmesi için de ilk gereken, çatlak başlama açılarının analizidir. Çatlak başlama açıları için 1960'lardan günümüze kadar homojen malzemeler için enerji, gerilim ve gerinim bazlı birçok metot önerilmiştir. Tüm bu metotlar arasından literatürde başlıca olarak kabul edilenleri aşağıda sıralanmaktadır:

- Maksimum Enerji Salınım Oranı (MESO) metodu (*The maximum energy release rate criterion* (*G-criterion*))
- Maksimum Teğet Gerilim (MTG) metodu (*The maximum tangential stress criterion* (*MTS-criterion*))
- Minimum Gerinme Enerji Yoğunluğu (MGEY) metodu (*The minimum strain energy density criterion*)

MESO metodu, Griffith [1] tarafından sunulan, enerji salınım oranı kavramını baz alan, ve çatlak ilerlemesinin enerji salınımının maksimum olduğu yönde olacağını belirten enerji bazlı bir metottur. MGEY metodu ise, Sih [2] tarafından önerilen çatlak ilerlemesinin gerinim enerjisinin minimum olduğu yönde olacağını belirten gerinim bazlı bir metottur. MTG ise, Erdogan ve Sih'in [3] çatlaktaki ilerlemenin teğet gerilimin maksimum olduğu yönde olacağını belirttikleri gerilim bazlı bir metottur.

FGMlerde çatlak ilerlemesi üzerine yapılan çalışmalar kısıtlıdır. Becker ve arkadaşları [4] maksimum enerji salınım oranı metodunu kullanarak, merkez çatlaklı FGM plaklarda çatlak ilerleme açılarını hesaplamışlar ve homojen malzemelerden farklı olarak çatlak ilerlemesi sırasında mod II gerilim şiddet çarpanı K_{II} 'nin, sıfır olması gerekmediğini bulmuşlardır. İlerleme sırasında K_{II} 'nin sıfır olmasının gerekmediği bulgusu, Abanto-Bueno and Lambros'un [5] deneysel çalışmasında da doğrulanmıştır. Kim ve Paulino [6] etkileşimli integral metodu kullanarak elde ettikleri gerilim şiddet çarpanları ve T-gerilimi ile genelleştirilmiş teğet gerilim metodunu kullanarak farklı çatlak geometrileri ve farklı malzeme özelliği dağılımları için çatlak başlama açılarını elde etmişlerdir.

2. GENELLEŞTİRİLMİŞ MAKSİMUM TEĞET GERİLİM (GMTG) METODU

Genelleştirilmiş Maksimum Teğet Gerilim (GMTG) kriteri [7] Erdoğan ve Sih tarafından önerilmiş MTG kriterinin [3] geliştirilmiş bir halidir ve sabit *T*-gerilim terimini de içermektedir. Lineer elastik izotrop FGMler için polar koordinatlardaki asimptotik teğet gerilimi:

$$\sigma_{\theta\theta} = \frac{1}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left[K_I \cos^2\frac{\theta}{2} - \frac{3}{2} K_{II} \sin\theta \right] + T \sin^2\theta.$$
(1)

 K_I , K_{II} ve T sırasıyla karışık mod gerilim şiddet çarpanları ve T-gerilimidir. MTG ve GMTG kriterleri çatlağın maksimum teğet geriliminin ($\sigma_{\theta\theta}$ max) oluştuğu yönde ilerleyeceğini belirtmektedir. Çatlak başlama açısı, θ_c aşağıda gösterildiği şekilde hesaplanmıştır:

$$\frac{\partial \sigma_{\theta\theta}}{\partial \theta} = 0 \implies \theta = \theta_c. \tag{2}$$

Denklem (1)'deki $\sigma_{\theta\theta}$, Denklem (2)'de kullanıldığında,

$$K_I \sin \theta_c + K_{II} (3\cos \theta_c - 1) - \frac{16}{3} T \sqrt{2\pi r_c} \sin \frac{\theta_c}{2} \cos \theta_c = 0$$
(3)

bulunur. r_c , hesaplamaların yapıldığı çatlak ucundan olan uzaklıktır.

3. GERİLİM ŞİDDET ÇARPANLARI VE T-GERİLİMİ

Çalışmada gerilim şiddet çarpanları ve *T*-gerilimi hesaplanmıştır. Gerilim şiddet çarpanları, J(0) metotları (Jintegralinin özel bir uygulaması) [8] ve mod ayırma [9] kullanılarak bulunmuştur. Homojen malzemelerde J-integrali hesaplandığı yoldan bağımsızdır. Ayrıca gövde kuvveti, termal gerinim ve çatlak yüzeyinde kuvvetler olmadığında homojen malzemelerde gerinme enerji salınım oranı, J-integraline eşittir (G = J). İki boyutta gerinme enerji salınım oranı, G; karışık mod gerilim şiddet çarpanları cinsinden

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'}$$
(4)

şeklinde ifade edilebilir. Burada:

düzlem gerilme (plane stress) için,
$$E' = E$$
,
düzlem gerinme (plane strain) için, $E' = \frac{E}{1 - v^2}$. (5)

E elastik modulus, ve v Poisson oranıdır.

Homojen olmayan malzemelerde ise J-integral yoldan bağımsız değildir. Anlaş ve arkadaşları [8] tarafından doğrudan klasik J-integralden gerilim şiddet çarpanlarını hesaplayabilen basit bir yöntem ortaya konmuştur. Bu yöntemde, J-integraller çatlak ucu etrafında farklı konturlarda hesaplanmış ve değerler kontur uzaklıklarına göre çizdirilmiştir. Bu noktalardan bir polinom geçirilmiş ve J-integralin çatlak ucundaki değeri, r \rightarrow 0 alınarak elde edilmiştir. Sonuçlar J-integralin limit değeri, J(0)'ın gerinme enerji salınım oranı, G'ye eşit olduğunu göstermiştir.

Karışık mod yükleme için J-integral aşağıdaki gibi ikiye bölünebilir.

$$\mathbf{J} = \mathbf{J}_{\mathrm{I}} + \mathbf{J}_{\mathrm{II}} \tag{6}$$

Denklem (4) kullanılarak,

$$\mathbf{J}_{i} = \frac{K_{i}^{2}}{E_{tip}^{\prime}} \tag{7}$$

elde edilir. E'_{tip} , Denklem (5)'de E ve v yerine çatlak ucundaki değerleri kullanılarak elde edilir. K_I ve K_{II} 'yi bulmak için J_I ve J_{II} ayrı ayrı elde edilmelidir. Mattheck ve Moldenhauer [9] geliştirdiği mod ayırma tekniği ve sonlu elemanlar kullanılarak J_I ve J_{II} bulunabilir. Bu teknikle çatlağın serbest yüzeyindeki düğüm nokta çiftlerinde kayma yönündeki deplasmanları eşitleyerek mod-I, açılma yönündeki deplasmanları eşitleyerek mod-II karışık moddan ayrıştırılabilir. Böylelikle FGMler için $J_I(0)$ ve $J_{II}(0)$ ayrı ayrı elde edilir.

T-gerilimi de $\theta = 0$ boyunca,

$$T = \lim_{r \to 0} (\sigma_{xx} - \sigma_{yy})$$
(8)

denklemi kullanılarak bulunmuştur.

Çatlak başlama açıları, θ_c Denklem (3)'ten belirli r_c 'ler için K_I , K_{II} ve T-gerilimi değerleri kullanılarak ya da bu çalışmada yapıldığı gibi belirli r_c 'ler için sonlu elemanlar metodundan elde edilen maksimum $\sigma_{\theta\theta}$ 'nin oluştuğu yön bulunarak elde edilebilir.

4. PROBLEM GEOMETRİSİ

Bu çalışmada, kenar çatlaklı bir FGM plak incelenmiştir. Plak genişliği, W=50mm, H/W oranı ise 2'dir (Bkz. Şekil 1a).

Plak alt ve üst kenarlardan şekilde çekilerek, $\sigma = 50$ MPa ile yüklenmiştir. Poisson oranı, v sabit alınmış ve değeri 0.3'tür. Elastik modulus x yönünde aşağıda gösterildiği biçimde üstel fonksiyon olarak değişmektedir:

$$\mathbf{E}(x) = \mathbf{E}_1 e^{\psi x} \tag{9}$$

Burada $\psi = \frac{1}{W} \ln \left(\frac{E_2}{E_1}\right)$ 'dir. E_1 sol kenarın elastik modulusu, E_2 sağ kenarın elastik

modulusudur. Karışık mod yükleme de çatlağın düşeyle yaptığı açı, β değiştirilerek sağlanmıştır.

Sonlu elemanlar modellemesi MSC.Marc[®] 2005r3'te yapılmıştır. Bu analizlerde kullanılan toplam eleman sayısı yaklaşık 15000'dir (Şekil 1b). Sonlu elemanlar ağ tipine göre her model üç bölgeden oluşmaktadır. İlk bölge çatlak ucu etrafındaki en küçük elemanlarla modellenmiş kısımdır (Şekil 1c). Bu bölge çatlak boyunun beşte birine kadar dairesel ağ ile modellenmiştir. θ yönünde her 2 derecede bir eleman vardır. Bu şekildeki ağ modellemenin faydası polar açı cinsinden gerilmelerin elde edilebilmesidir. Çatlak ucundan uzaklaştıkça diğer iki bölgede eleman boyutları büyümekte ve bu bölgelerde otomatik olarak ağ yapısı oluşturulmaktadır. Kullanılan eleman tipi 4 düğüm noktalı, düzlemsel gerinme (plane strain) Quad4'tür.

8. Uluslar Arası Kırılma Konferansı Bildiriler Kitabı 7 – 9 Kasım 2007 Prooceedings of 8th International Fracture Conference 7 – 9 November 2007 Istanbul/TURKEY

Şekil 1. (a) Kenar çatlaklı FGM plak geometrisi. (b) Sonlu elemanlar tüm ağ modeli, ve (c) çatlak ucu ağ modeli.

Gerilim şiddet çarpanının analitik çözümü mevcut olan merkez çatlaklı homojen plakta yapılan yakınsama çalışmalarında farklı eleman sayıları içeren sonlu elemanlar modelleri kullanılmıştır. Sonuçlar Şekil 2'de gösterilmiştir. Yaklaşık 15000 eleman kullanmak yüzde 1'in altında hata verdiği için yeterli bulunmuştur.

5. BULGULAR VE DEĞERLENDİRME

Sonlu elemanlar sonuçlarının doğrulanması için çalışmada ilk olarak merkez ve kenar çatlaklı homojen plaklar incelenmiştir. Daha sonra ise Şekil 1a'da gösterilen dört farklı parametre (β , a/W, E₂/E₁, r/a) için, değişik modeller hazırlanıp her modelde çatlak başlama açıları, gerilim şiddet çarpanları ve T-gerilimleri hesaplanmıştır. Bu parametrelerden; β , çatlağın düşeyle yaptığı açı, a/W, çatlak boyunun plağın kenarına olan oranı, E_2/E_1 , çatlağa yakın olan kenarın elastik modülünün çatlağa uzak olan kenarınkine oranı ve r/a, ise hesaplamanın yapıldığı yerin çatlak ucuna olan uzaklığının çatlak boyuna oranıdır (r/a analitik hesaplamadaki r_c yerine geçer). Çizelge 1'de parametrelerin aldığı farlı değerler gösterilmiştir.

Şekil 2. Farklı eleman sayılarındaki ağ modelleri için yüzdesel hata ve CPU zamanları.

β	15°	30°	45°	60°	75°	90°			
a/W	0.1	0.2	0.3						
E_2/E_1	0.1	0.2	1	5	10	25	50	100	125
r/a	0	0.002	0.01	0.05	0.1				

Çizelge 1. Parametrelerin değerleri.

Tüm bu modellere ait bulguları ve verileri burada göstermek çok yer tutacağından bazı örnek modellere ait veriler ve grafikler aşağıda gösterilmiştir. Şekil 3'te ilk olarak en önemli parametre olan E_2/E_1 değerinin, sabit r/a ve a/W'da çatlak başlama açısı üzerindeki etkisi verilmiştir. Şekil incelendiğinde E_2/E_1 değeri arttıkça (çatlak ucundan uzaklaşıldıkça malzemenin elastik modülünün artması) herhangi bir çatlak açısı için çatlak başlama açısının (- θ_c) küçüldüğü gözlemlenebilir. Burada kastedilen küçülmenin fiziksel anlamı, elastik modül arttıkça çatlak ilerleme yönünün çatlağın kendi doğrultusuna doğru yaklaşmasıdır.

Çizelge 2'de ise β =60°'ye ait farklı çatlak uzunlukları ve malzeme özelliği değişimleri için çatlak başlama açıları verilmiştir.

Şekil 3. r/a=0, a/W=0.3 için farklı E_2/E_1 değerlerinde β ile çatlak başlama açıları arasındaki ilişki.

8-60°	Çatlak Başlama Açıları, θ												
<u>p=00</u>		a/W	=0.1			a/W	/=0.2		a/W=0.3				
E2/E1	rc/a= 0.002	rc/a= 0.01	rc/a= 0.05	rc/a= 0.1	rc/a= 0.002	rc/a= 0.01	rc/a= 0.05	rc/a= 0.1	rc/a= 0.002	rc/a= 0.01	rc/a= 0.05	rc/a= 0.1	
0,1	34,47	32,24	30,08	29,47	35,11	31,92	29,80	29,15	34,87	31,50	29,54	28,94	
0,2	33,40	31,76	30,14	29,71	34,08	31,50	29,98	29,50	33,97	31,20	29,75	29,30	
1	32,74	31,20	30,14	29,90	32,59	30,76	30,07	29,86	32,21	30,36	29,92	29,79	
5	32,35	30,93	30,08	29,91	31,58	30,09	29,84	29,80	30,52	29,28	29,50	29,65	
10	32,20	30,82	30,03	29,88	31,14	29,78	29,67	29,67	29,74	28,72	29,19	29,36	
25	31,85	30,69	29,94	29,82	30,51	29,29	29,35	29,42	28,62	27,91	28,71	29,02	
50	31,75	30,51	29,84	29,75	30,02	28,87	29,05	29,16	27,66	27,10	28,14	28,44	
100	31,52	30,40	29,72	29,65	29,48	28,35	28,67	28,84	26,64	26,33	27,53	27,93	
125	31,61	30,27	29,72	29,62	29,32	28,20	28,56	28,73	26,27	25,96	27,30	27,70	

Çizelge 2. β =60° için farklı a/W, r/a ve E₂/E₁ değerlerinde çatlak başlama açıları.

Yukarıdaki veriler incelendiğinde ise göze şunlar çarpar: Şekil 3'teki gibi sabit r/a ve a/W için, E_2/E_1 değeri arttıkça çatlak başlama açısının (- θ_c) küçüldüğü gözlemlenir. Fakat aynı zamanda E_2/E_1 değerinin büyümesiyle r/a'nın çatlak başlama açısı üzerindeki etkisinin azaldığı ortaya çıkar.

a/W oranının etkisine gelince, a/W artıkça sabit r/a ve E_2/E_1 için, çatlak başlama açısının (- θ_c), $E_2/E_1 \ge 1$ için küçüldüğü görülür. Fakat $E_2/E_1 < 1$ için veriler kesin bir sonuç söylemek için yeterli değildir. $E_2/E_1 > 1$ için a/W'nın çatlak başlama açısı üzerine etkisi E_2/E_1 değeri artıkça ve r/a değeri küçüldükçe daha belirginleşir. Bu olay Şekil 4'te açıkça görülmektedir.

Şekil 4. $E_2/E_1 \ge 1$, (a) r/a=0.01, (b) r/a=0.05 ve (c) r/a=0.10 için ile farklı a/W değerleri için E_2/E_1 ile çatlak başlama açıları arasındaki ilişki (β =75°).

r/a parametresinin etkisine gelince, sabit β açısında tüm E_2/E_1 değerleri için r/a artıkça, yani çatlak başlama açısının ölçüldüğü yer çatlak ucundan uzaklaştıkça çatlak başlama açılarının çoğunlukla küçüldüğü gözlemlenir. Bu etki ise E_2/E_1 değeri artıkça azalır. Çizelge 2'de yer alan veriler aşağıda Şekil 5'te grafiksel olarak gösterilmiştir.

Başlık 3'teki metotla K_I ve K_{II} gerilim şiddet çarpanları ve T-gerilimi elde edilmiş ve aşağıdaki çizelgede gösterilmiştir.

Şekil 6'da ise a/W=0.2 için T-gerilimlerinin yükleme, σ 'ya göre boyutsuzlaştırılmış hallerinin çatlak açıları ile arasındaki ilişki gösterilmiştir. Aşağıda da görüldüğü üzere, $E_2/E_1 \ge 1$ için E_2/E_1 oranı arttıkça T-gerilimi tüm çatlak açıları için 0'a doğru yaklaşmaktadır.

8. Uluslar Arası Kırılma Konferansı Bildiriler Kitabı 7 – 9 Kasım 2007 Prooceedings of 8th International Fracture Conference 7 – 9 November 2007 Istanbul/TURKEY

Şekil 5. β =60° için farklı a/W, r/a değerlerinde E₂/E₁ ile çatlak başlama açıları arasındaki ilişki.

6. SONUÇLAR

Bu çalışmada özellikleri fonksiyonel olarak değişen malzemenin kırılma mekaniği analizi yapılmış ve şu sonuçlara ulaşılmıştır:

Şekil 6. a/W=0.2 için farklı E₂/E₁değerlerinde boyutsuzlaştırılmış T-gerilimleri ile çatlak açıları arasındaki ilişki.

	a/W=0,3						a/W=0,2					a/W=0,1					
E2/E1	β	F-I	F-II	T-stress		E2/E1	β	F-I	F-II	T-stress		E2/E1	β	F-I	F-II	T-stress	
	90	1,372	0,020	-0,265		5	90	1,135	0,014	-0,350		5	90	0,992	0,014	-0,409	
	75	1,285	0,186	-0,172			75	1,073	0,166	-0,253			75	0,946	0,156	-0,310	
5	60	1,056	0,314	0,074			60	0,903	0,286	-0,003			60	0,812	0,273	-0,053	
	45	0,758	0,356	0,380			45	0,671	0,333	0,323		3	45	0,621	0,326	0,287	
	30	0,462	0,313	0,653			30	0,426	0,302	0,622			30	0,406	0,303	0,601	
	15	0,208	0,209	0,789			15	0,205	0,203	0,788			15	0,196	0,201	0,787	
	90	1,236	0,024	-0,175		10	90	1,009	0,019	-0,278		10	90	0,870	0,017	-0,349	
	75	1,158	0,162	-0,101			75	0,954	0,145	-0,197			75	0,828	0,136	-0,262	
10	60	0,953	0,274	0,094			60	0,804	0,249	0,011			60	0,711	0,238	-0,043	
10	45	0,685	0,311	0,343			45	0,596	0,291	0,285			45	0,542	0,284	0,249	
	30	0,416	0,275	0,573			30	0,377	0,264	0,542			30	0,354	0,263	0,521	
	15	0,191	0,179	0,691			15	0,180	0,177	0,685			15	0,170	0,174	0,681	
	90	1,053	0,027	-0,087		25	90	0,838	0,021	-0,202		25	90	0,700	0,017	-0,272	
	75	0,987	0,132	-0,034			75	0,792	0,117	-0,142			75	0,667	0,109	-0,204	
25	60	0,813	0,222	0,103			60	0,666	0,201	0,019			60	0,571	0,190	-0,031	
	45	0,583	0,253	0,287			45	0,493	0,235	0,233			45	0,434	0,225	0,198	
	30	0,352	0,224	0,460			30	0,309	0,212	0,434			30	0,282	0,209	0,411	
	15	0,198	0,186	0,555			15	0,146	0,141	0,544			15	0,135	0,137	0,536	
	90	0,919	0,027	-0,040			90	0,713	0,020	-0,154		50	90	0,578	0,016	-0,221	
	75	0,862	0,111	0,001		50	75	0,674	0,098	-0,105			75	0,550	0,089	-0,164	
50	60	0,709	0,186	0,105			60	0,566	0,167	0,021			60	0,470	0,155	-0,024	
20	45	0,508	0,212	0,241			45	0,416	0,195	0,193			45	0,356	0,184	0,161	
	30	0,304	0,188	0,381			30	0,259	0,175	0,356			30	0,230	0,169	0,330	
	15	0,134	0,121	0,457			15	0,120	0,116	0,442			15	0,109	0,111	0,433	
	90	0,792	0,051	-0,004			90	0,597	0,019	-0,115			90	0,467	0,014	-0,174	
	75	0,742	0,092	0,024			75	0,563	0,080	-0,077			75	0,444	0,072	-0,130	
100	60	0,610	0,153	0,099		100	60	0,472	0,136	0,020		100	60	0,379	0,124	-0,019	
	45	0,436	0,175	0,199			45	0,346	0,158	0,157			45	0,286	0,147	0,129	
	30	0,259	0,155	0,307			30	0,213	0,133	0,285			30	0,184	0,135	0,266	
	15	0,112	0,099	0,367			15	0,085	0,093	-			15	0,087	0,088	0,342	
	90	0,753	0,025	0,005			90	0,561	0,018	-0,104			90	0,435	0,014	-0,161	
125	75	0,705	0,086	0,031		125	75	0,530	0,075	-0,068		125	75	0,413	0,067	-0,120	
	60	0,580	0,143	0,097			60	0,443	0,127	0,021			60	0,352	0,115	-0,016	
	45	0,414	0,164	0,181			45	0,324	0,148	0,146			45	0,266	0,136	0,119	
	30	0,245	0,145	0,285			30	0,199	0,132	0,265			30	0,170	0,125	0,245	
	15	0,105	0,093	0,344			15	0,084	0,093	0,329			15	0,080	0,081	0,314	

Çizelge 3. Farklı β , a/W, E₂/E₁ değerleri için K_I ve K_{II} gerilim şiddet çarpanları ve T-gerilimi.

- Malzemenin homojen olmama durumu, E₂/E₁, artıkça çatlak başlama açısının azaldığı gözlemlenmiştir.
- Çatlak boyunun çatlak başlama açısı üzerine etkisi olduğu tespit edilmiştir. Çatlak boyu arttıkça $E_2/E_1 \ge 1$ için çatlak başlama açısının küçülmektedir.
- Gerilim değerlerinin incelendiği yer, r_c'nin de çatlak başlama açıları üzerinde önemli etkisi olduğu görülmüştür.

TEŞEKKÜR

Bu çalışma Devlet Planlama Teşkilatı'nın DPT 01 K 120270 nolu ödeneği ile desteklenmiştir. Bu desteğinden dolayı Devlet Planlama Teşkilatı'na teşekkür ederiz.

KAYNAKLAR

- 1. A. A. Griffth, Phil. Trans. Royal Society of London, 221A, p. 163-198, 1920.
- 2. G. C. Sih, Int. J. Frac., 10, p. 305-321, 1974.
- 3. F. Erdogan and G. C. Sih, J. Basic Eng.-Trans ASME, 85, p. 519-525, 1963.
- 4. T. L. Becker, R. M. Cannon, R. O. Ritchie, Int. J. Solids Struct., 38, p. 5545-5563, 2001.
- 5. J. Abanto-Bueno, J. Lambros, **Exp. Mech.**, 46, p. 179-196, 2006.
- 6. J. -H. Kim, G. H. Paulino, Comput. Methods Appl. Mech. Eng., 112, p. 1463-1494, 2003.
- 7. J. G. Williams and P. D. Ewing, Int. J. Frac. Mech., 8, p. 441-446, 1972.
- 8. G. Anlas, M. H. Santare, J. Lambros, Int. J. Frac., 104, p. 131-143, 2000.
- 9. C. Mattheck and H. Moldenhauer, Int. J. Frac., 34, p. 209-218, 1987.