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ABSTRACT

Developing the ideas of work [1] onsidered is the problem of stress-strain state determination
for linearly viscoelastic anisotropic body in case when the solution of the corresponding
elastic problem can be found numerically. It is proposed to find viscoelastic solution using
continued fraction approximation of the stress or strain at hand as a function of elastic
constants. This approximation can be obtained numerically by any efficient numerical method
(e.g. BEM). If only the Volterra principle is valid the solution can be found using resolvent
operators’ algebra. The possible error minimization is made via method of rational
approximation by Stoer. An algorithm of the solution as well as estimation of the possible
error is presented. The advantages of the proposed technique applied to contact and fracture
problems of linear viscoelasticity are discussed.
As an example the solution of the stress concentration determination problem for orthotropic
viscoelastic plane with rigid circular inclusion is given as well as the comparison with the
earlier results obtained from the analytical solution.

Keywords: BEM, contact problem, continued fraction, fracture, integral operator, visoelasticity.

1. INTRODUCTION

Most of the works devoted to investigation of stressed state and fracture of linear viscoelastic
bodies deal with the application of some techniques to obtain the solution of viscoelastic
problem somehow reducing it to the elastic one [2,3,4].

In series of works by Prof. Kaminsky and his co-authors (see survey in [3]) an effective
approach to solution of the problems of stressed state determination and study of crack growth
in viscoelastic bodies was found (operator continued fraction method (OCFM)). This
approach allows obtaining the solution of viscoelastic problem by expansion of viscoelastic
solution (as a result of application the Volterra principle to the known analytical solution) into
continued fraction of viscoelastic operators. The continued fraction can be easily reduced to
linear combination of operators using resolvent operators algebra.

However, by now in a pure sense operator continued fraction method can be applied to
solution of the problems with analytically solved elastic counterparts. This work is aimed to
overcome this shortcoming and show the algorithm to solve viscoelastic problems which have
numerical solution.
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2. AN ALGORYTHM OF SOLUTION

2.1 Governing equations and boundary conditions
Consider linear viscoelastic orthotropic body of material with the following stress-strain
interrelations
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where 11 22 12, ,ε ε γ  are the strains, 11 22 12, ,σ σ τ  are the stresses in material and
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11 22 12 12 21, , , ,E E G ν ν  are instantaneous elastic modules of the material, ,i iλ β  are

rheological parameters of the material,

( ) ( ) ( )*

0
( , )

t

i iR f t R t fβ ⋅ = − τ β τ τ∫ d (3)

are Volterra’s operators of the second order. According to the Boltzmann principle of linear
viscoelasticity the other governing equation as well as the form of boundary conditions
coincide with the elastic ones.

Hereafter we assume that boundary conditions meet the conditions of the Volterra principle
applicability (at least for the stress or displacement that is crucial for strength of body), i.e., it
suffices to replace elastic constants in solution of elastic problem by the corresponding
viscoelastic operators (2) to determine viscoelastic solution. Denote the elastic solution as

( ) ( )( )11 22 12 12 21 11 22 12 12 21, , , , , , , , ,ij kE E G u E E Gσ ν ν ν ν . Then the viscoelastic solution will be

( ) ( )( )* * * * * * * * * *
11 22 12 12 21 11 22 12 12 21, , , , , , , , ,v v

ij kE E G u E E Gσ ν ν ν ν . The problem is reduce this solution to

algebraic construction of operators from Eqs. (2).

2.2 Reducing the number of operators
As it was discussed in [1] the most general and convenient for the bounded operators are
operators of Yu.N.Rabotnov which are resolvent, i.e.

( )( ) ( )1* *1 1 .R R
−

+ λ β = − λ β − λ (4)
This property can be used to reduce the number of operators in viscoelastic solution. Suppose
that min ii

β = β  then we can rewrite all operators in (2) via ( )*R β :
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β −β β −β − β − β β
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Thus viscoelastic solution takes the form ( )( ) ( )( )( )* *,v v
ij kR u Rσ β β .

2.3 Reduction of viscoelastic solution as a classical Taylor series and approximate
solution
Suppose that we have to find stress or displacement at the definite point of body. Let this
solution is as follows ( )( ) ( )*

m mF R f tϕ = β ⋅ , where mF  is analytic function determined by
the structure of the elastic solution, f  is the function that depends on the boundary
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conditions. According to work [5] in case of bounded viscoelastic operators mF  can be
expanded into classical Taylor series

( )( ) ( ) ( ) ( ) ( ) ( )( )2* * *10 0 0
2!m m m mF R F F R F R′ ′′β = + ⋅ β + ⋅ β +K (6)

Thus, to obtain viscoelastic solution as Taylor series it suffices to know all derivatives of mF
at the zero point. This can be done by the investigation of the sequence elastic problems with
proper variation of ( )*R β  as a real-value parameter x  in Eqs.(2) and (5).
Now let we found an approximate solution of elastic counterpart of the problem at hand, say

( )11 22 12 12 21, , , ,m m E E G fψ = Φ ν ν ⋅ . Then corresponding function in viscoelastic solution has
the form
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2!m m m mR R R′ ′′Φ β = Φ + Φ ⋅ β + Φ ⋅ β +K (7)

mΦ  can be determined using finite differences. Suppose that we can obtain all coefficients in

series (6) and (7) so that ( ) ( ) ( ) ( )0 0 ,n n
m ijkl m ijklF D D n− Φ < ε ∈ N . To estimate the accuracy of the

approximate solution ( )( )*
m RΦ β  we have (if ( )*R β = ν ):
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That means that for accuracy Ε  we need to know all of derivatives of ( )( )*
mF R β  with the

accuracy ( )*Re β
Ε  that is very strong restriction.

2.4 Continued fraction approach to the problem
Today numerical methods can give an approximate solution of elastic problem with the
arbitrary precision (it depends only on physical capability of computer). Thus, we can neglect
the possible error of approximate solution at the given point and consider the deviation of the
approximate solution of viscoelastic problem as a whole. Stoer [6] proposed a method that in
a reasonable turns of approximation can give an approximant to the function with given
accuracy. This approximant is written in a form of continued fraction which is very
convenient to calculations with resolvent operators. In our terms this will be
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where ix  are chosen on interval of approximation to minimize the possible error. The problem
of possible error of approximation can not be solved so easy as it was for classical Taylor
series because of this problem is incorrect as well as the problem for inverse Laplace
transform for correspondence principle [1].
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3. EXAMPLE

As an example we consider the problem of stress determination in infinite orthotropic
viscoelastic plate with the rigid circular inclusion (Fig. 1). Rheological characteristics of the
material is as follows
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Figure1. Test problem geometry.

To obtain the approximate elastic solutions BEM in a form of fictive loadings is used [7].
According to this work displacements and stresses under symmetrical relative to origin
constant loads xP  and yP  on interval of length 2a , along x -axis of rotated on angle β
coordinates can be found as
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where 2
1γ  and 2

2γ  are roots of bi-quadratic equation
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and kI , 1, 4k =  are complicated functions form work [7].
Taking into account the symmetry of the problem it suffices to study the state of quater of the
inclusion, to apply BEM it was broken on 200 intervals (relative error of such a solution in
elastic case is about 910− ). To approximate viscoelastic function for stress along the loads we
used Stoer approximation with error level 5

1 10−λ = . The results obtaned here coincides with
the results from work [8] which was obtained from the analytical solution of the problem
using OCFM (Fig. 2).

Figure2. Dimensionless radial stress along loading vs time (bullets shows analytical solution
[8]).
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4. CONCLUSIONS
In this report only a general framework of possible application of operator continued fraction
method application to the numerically-solved problems of contact and fracture problems of
viscoelasticity theory is given. However, it can be successfully applied to study stressed state
of viscoelastic bodies.
To obtain the solution in example we use an efficient Stoer approximation. However, it must
be applied with care in each case because of the problem incorrectness.
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