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ABSTRACT

Considered in this study are the axis-symmetric problems of fracture of composite materials
with interacting cracks, which are subjected to residual (initial) stresses parallel to the cracks
planes. An analytical approach in the framework of three-dimensional linearised mechanics of
solids is used. Two geometrical schemes of cracks placement are studied: a circular crack is
located parallel to the surface of a semi-infinite composite with residual stresses and two
parallel penny-shaped cracks are contained in an infinite composite material with residual
stresses. The cracks assumed to be under anormal or aradial shear load.

Analysis involves reducing the problems to the systems of Fredholm integral equations of the
second kind, where the solutions are identified with harmonic potential functions. The
representations of the stress intensity factors near the cracks edges are obtained. These stress
intensity factors are influenced by the residual stresses. The presence of the free boundary and
the interaction between cracks has significant effects on the stress intensity factors as well.

The parameters of fracture for two types of composites (a laminar composite made of
aluminum/boron/silicate glass with epoxymaleinic resin and a carbon/plastic composite with
stochastic reinforcement by short ellipsoidal carbon fibers) are analyzed numerically. The
dependence of the stress intensity factors on the residual stresses, physical-mechanical
parameters of the composites and the geometrical parameters of the problem are investigated.

Key words: composites, residual stresses, circular cracks, stress intensity factors

1. INTRODUCTION

Process of composites making often causes residual (technological) strain and stressaswell as
defects (cracks, exfoliations) in composite materials. These residual stresses may influence
considerably on the cracks propagation in composites [1]. When the residaul stresses are
oriented parallel to the crack planes their influence on fracture parameters cannot be modeled
in the framework of the concept of linear elastic fracture mechanics with classical fracture
criteria Griffith-Irwin type because of missing stress components acting along cracks in the
criteria mentioned.
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A method of approach for the problem of failure of materials with initial (residual) stresses
acting along the crack surfaces was developed by A.N.Guz' [1, 2] on the basis of relations of
the three-dimensional linearised solids mechanics. Some static and dynamic problems for
isolated cracks in homogeneous infinite solids were solved in [1, 3]. Solutions for a pre-
stresses isotropic homogeneous half-space with a penny-shaped crack under normal pressure
and radial shear are presented in [4, 5].

The aim of the present work is studying the influence of residual stresses on fracture of a
semi-infinite composite with a circular crack and on fracture of a infinite composite
containing two parallel disk-shaped cracks. The cracks assumed to be under normal or radial
shear loads. It is assumed that dimensions of the cracks are essentially greater that the
dimensions of structural elements of the composites, i.e. the macro-cracks are considered.
Under the assumptions mentioned the composite material are modeled by an anisotropic solid
with reduced mechanical characteristics.

2. PROBLEM FORMULATION

The relationships of the second variant of small initial strain theory [1] are used. Theinitial
state caused by initial (residual) stresses is determined by geometric-linear theory. With the

reference to asystem of Cartesian coordinatesx; (j =1,2,3) , the components of the stress
tensor are given by s ; and the components of the displacement vector by u; .

An initia tension (compression) is applied in the Ox, X, -plane. This results in a uniform initial
stress and strain state
s =0, s, =s510 s, =const,
u=d, (I, - 1,=1,11, 1, =const, ©

where | ; arethe extensional (contractional) ratio while d;; is Kronecker’s symbol.

In [1, 3], the general solutions of linearised equations of equilibrium for the uniform initial
state in Eqg. (1) are obtained in terms of potential functions. These solutions depend on the
roots n, and n, of the governing characteristic equations. For problems with axis-symmetry,
asolution for different roots (which isrealized for composites materials) is given by

:1(il+j 2) ; U;=mn, 211111211+m2 21/21111122 :
2
e, &, 1 l 5,9 1é 12y ﬂ] MW a2, T LU
= 0 1 ) ,
ty Cmgdll +d I 1_[222 B, C ﬂr gh 1_[21 +n, d2 1_[22 H’ ( )

where (r,q, x;) are cylindrical coordinates obtained from Cartesian coordinatesx; (j =1,2,3),

1/2

zon Y%, (i=12) , ji(r,z) are harmonic potentid functions. The values

Cuom .l ,n,d (i=12)inEgs (3) depend on the initial stresses as far as on the material

properties. For linear material model

N, :%(ma +S 101)-1(a11 *+S ﬁ)_l{(auasa +S 101a33 +S 101n]3 - 2a13n]3 - a123) £

+ \/(auaaa +S fla33 +S flnl?, - 2a13n]3 - a123)2 - 4(a11 +S fl)(nla +S fl)nlaaeag

303



8. Uluslar Arast Kirilma Konferanst Bildiriler Kitabt 7 — 9 Kasim 2007
Prooceedings of 8th International Fracture Conference 7 —9 November 2007
Istanbul TURKEY

Cpy=mg; m; = [(all +S](.)l)nj - rr13](5:113 + nls)_l; djy =1+m;; (3)
-1 _ .
Ij = [nj (auaea +5101a33 - a123 - aianla)' asanla][nj (au +Sfl)+a13] njlmsl; J =12.
For transversally-isotropic composites parametersa;; , m; are not depend on the initial
stresses s ) and obtained as
a, =E(l-nn")a; a, =E'(l-n?)a’!; a; =En'(L+n)al; a=1-n2- Zn"-nn"

m, =G° Gy :%E(1+n)-l; M3 =G G3;N %Ny, N7 N3y N0 N5 (4)

2.1. A near-surface crack in a semi-infinite composite
Let us consider a semi-infinite composite that is bounded by a planex, =-h. A penny shaped

crack with radius a lies in the upper hafspace x, 2 - h inthe plane x, =0 with the centre on
the Ox,-axes. The origin of the cylindrical coordinates coincides with the center of the crack.

On the faces of the crack, normal stresses s (r) (symmetrical with respect to the planex, =0)
and radial stressest (r) (anti-symmetrical with respect to the planex, = 0) are specified. The
values of these stresses are assumed to be small in comparison with the value of the initial
stressess ;. Only axis-symmetric stress and strain distribution considered. The boundary of
the half-space is stress-free. The boundary conditions are
ty=-s(r) ; t, =-t(r) ; (x;=#0, 0£r<a),

t,=0 ; t, =0 ; (xg=-h, 0E£r<¥). (5)

Here t; are the components of non-symmetric 1% Piola-Kirchhoff stress tensor.

The solid can be divided into two regions: 1- the half-space x;3 0 and 2 —thelayer-h£x; £0.
At the regions boundary outside the crack (x, =0,r >a) the stresses and the displacements
should all be continuous. This requires the following additional conditions

ul) =0 uW =y®  (x,=0,rs a), (6)
f =1, =1, (x=00£r<¥) (7)
t?=-s(t), tP=-t(r), (x,=0,0£r<a), (8)
=0 t¥=0 (x,=-h0E£r<¥). 9)

Moreover, the stresses and displacements in the half-space x; 32 0must vanish for large
values of x,.

2.2. Two parallé cracksin an infinite composite
Let us consider two circular cracks with equal radiuses a, which are located in parallel planes

X, =0 and x, =-2h with centers on the axysOx,. For this cracks placement there is a
symmetry of geometrical and stress-strain schemes of the problem with the plane x =-h.

Therefore, the problem for the space containing two parallel cracks may be formulated in
terms of a problem for a half-space with a near-surface crack. On the faces of the crack,
normal stresses s (r) (symmetrical with respect to the planex, = 0) and radial stressest (r)
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(anti-symmetrical with respect to the planex, = 0) are specified. Considering the upper half-
space X, 3 - hwe have boundary conditions on the crack facesand ontheplane x =-h
t,=-s(r), t, =-t(r) (% =%0,0£r£a)
u,=0,t, =0 (x;=-h,0Er <¥). (10)

Let us divide the solid into two regions. 1- the half-space x;2 0 and 2 —the layer-h£ x; £0.
At the regions boundary outside the crack (x, =0,r >a) the stresses and the displacements
should all be continuous. This requires the following additional conditions

ul) =0 uW =y®  (x,=0,r3 a), (11)
=1, § =), (x=00er<¥) (12)
tP =-st), t¥=-t(r), (x,=0,0£r<a), (13)
u? =0, t?=0 (x,=-h0Er<¥). (14)

3. FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

The problems can be reduced to systems of dual integral equations and then to Fredholm
integral equations of the second kind. Referring to regions 1 and 2, the harmonic potential

functions j ; and j , can be expressed in form of the Hankel integrals
¥ ¥
j90,2)= A0 Je =3, 1)1 £ 2.) = B Je =90 1)
0
ql

Ishih’ (15)

C,(1 Jehl (z, +h)+C, (1 Jshl (2, +h)J35(1 r)———

o_‘KO

i2(rz)=¢

| 202,)= 300 el (2, +1,)+ D, ) (2 +h i) T .

whereh, =hn'*? (i =1,2), J,(I r) denotesthe Bessel function. The functions A(l ), B(l ),
D;(1),¢;().(] :lz)remainto be found.

N oo

3.1. A near-surface crack in a semi-infinite composite
Conditions (7) Ta (9) specified on the entire plane of x; =const allow the determination of the

functions A(l ), B(1 ),D; (I ) intermsof functions C;(l ), (j =1,2). From the Egs. (6) and (8)
the following system of dual integral equationsis obta| ned

¥\é k2 d;' —_ S(r) .

G Yo - )+ - o (1) 0 = 20 <)

¥ £ N

5, ( - Ko Yo - gty 1) SONm o) e
0@ k" g a Cydy

w«

FIlNd =0 (>a):  guLind =0 (r>a),

with
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X, =Gl )%[(1+ cthm) - g(1+ cthm,)] + G, ( )I:( & AL (1+cthm) - g(1+ cthmz)u ;

X, =G, )2 é(1+Cthm_)'—g(1+Cthmz)u+Cz() [(1+cthm) - g1 +cthmy)]. (17)

The derived system of dual integral equations (16) is solved using the procedure, which is
analogous to that presented in [6]. We seek the solution of the system of Eqgs. (16) in the form

X, :% (t)sinl t dt; X, =@},ﬁy (t)35,,(1 t)dt, (18)
0 0

where j (t),y (t) are unknown functions, continuous together with their derivatives in the
interval [0, a].

The third and the fourth equations in (16) are automatically satisfied. Functions
(1) (j=12) are expressible in terms of X, (I ), X, (I ). The substitution of these quantities

into the first and second Egs. (16) for r <a gives the Fredholm integral equations of the
second kind, which may be given in the dimensionless form

1 1 A
f(x)+4—k1c‘)f (h)K,(x,h)dh - 4—Efg(h)|<lz(x,h)dh =- ‘;—E Cplx sing)dg ,
0

alx )+—Of( JKaa(x,h)dn - =2 cplh)K,,(x,h)dh ==2x ¢p(xsing)dg, (19)
pk Pk pk 5

Wt ob iy ol 0= 28 e )

t(x)° s (ax), p(x)°t (ax). (20)
The kernels of integral equations (19) are

Kol n) =38 @1s(oy +b2)- K 1 (20,) - e
2 1 u

K12(X’h):%{ hllo(bl‘*bz’h)' Io(bl+ bzil)]'

%b'llo(Zbl,h)- |0(2b1,1)]-% Ho(20,,0)- |0(2b2’1)]}

K, +k, )
! g 2 2(2b2’h)§ ;
K (X, h)—-—x{ 2[h (b, +byh)- Il(b1+b2,1)]- klzlkz[h‘lll(Zbl,h)- I1(2b1,1)]-
1

kl+k2i1

1 1

Z1,(2b,,h)- =1

K21(X1h)

(b, +by.h)- (22)

1, (2b,h)- 1,(20,2)]},

with
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1, b2+(x+h)* _1 z+1 b
l,(bh)==In——"—1 == ; 1,(bh)= ;
o(bh) 4an+(x.h)2 471 i(b:) h(z?-1

. 10
1,(0.h)=1,(b.h)&z 1,(b,h)- 53,
e u

2 2 2
wherez =2 X" , b=hat | b, :bn{y2 (i=122).

2xh

3.2. Two parallel cracksin an infinite composite
Using the same procedure that in 3.1. it can be obtained the system of the Fredholm integral
equations of the second kind in the dimensionless form

f(x)+p3@f h)K,(x.n )ah +p£c‘p(h)K12(x,h)dh - gpc‘p(xsinq)dq ,
g(x)+p3(‘)f (h)K,, (x,h)dh +p3(‘;;(h)|<22(x,h)dh :gx(‘)q'(x snq)dg, (22)

where

S(X)=%, qlx)° % t(x)° s (ax), p(x)°t (ax).
a2tz Ny %d,

The kernels of the integral equations (22) are

Ky, (x,h)=kk1,(2b,,h)- k,k1,(2b,,h);
Ky (.h) =k k*{[1,(2b, 2)- 1,(20,.2)]- h*|1,(2b, )h)- 1,(20, b} ;
Kax,h) = kk 1, (2b,,0)- 1,(2b, h)];
Kzz(xih):'Xk_l{[kzll(Zblil)' k1|1(2b2’1)]' h_l[kzll(Zbl’h)' k1|1(2b1’h)]}

4. STRESSINTENSITY FACTORS

Similar to the classical case [7] we determine the stress intensity factors as coefficients with
singularities in the stress components near the tips of the crack

Ky = L!Dr[] [20(r- &) "*t(r,0), K, = L!Dr[] [20(r - &)] *t,(r,0) (23)

4.1. A near-surface crack in a semi-infinite composite

System of simultaneous Fredholm integral equations of the second kind (19) may by solved
numerically. Than, based on the Egs (2), (15), (17)-(20) the expressions for components of the
stress tensor can be obtained as
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k a ¥
t2(r,0)= Cpudyl, { — 20 (t)dtcginl t Io(1 r)i i +
1o 0
; ¥eé k 1k +k, ak a
) (t)dt p2—2e™m ™. 222%™ 4o M Einl t I (Ir) d -
§ (a goize - kgl Giant 12,(17)
a ¥ / N
%G/ﬁ (t)dt \ek]_-;;kz e—nl-m2 _ ;k]_ kk ( 2m+e )3\] ( ) (I r) 3/2d| }
0 0€ u

t?(r,0)=- C,n; ¥2d, {—( Oy (t)dt 013,2 (1 £)3,( r) %2 +
Vo o/fy (t)dti‘)§2—le"“'”b Lkt @ com yen By (02,0 1) 2 -
o cB k k gk m 3/2

2

a ¥ .

5 ()t gfe ke gmom %&Lk'%(em+e'z"b)ggn|u1(| o) di (24)
0 o€ u

Analysis of the Egs. (24) showsthat at r ® +a
t? (r,O) »-C,d,l, K _] (a) t? (r,O) » C,,n;"%d kK _ 3y (a) : (25)

_km/rz-a2 ’ Y2k, r4fr2- a2

From Egs. (24), (25) it follows
k |p. ;Y2 kK |p
K, =-C,d|] a); K, =C,, d, -y (a). 26
2 Va @K 201 @ (26)

Using dimensionless variables and functions, it can be obtained

K, :-CMdlllix/p_af(l) . K, =C,n; Y2, —\/_cp( )olx (27)
1

where the functions f(x)and g(x) should be determined from the system of Fredholm
integral equations (19).

4.2. Two parallel cracksin an infinite composite
Similar to 4.1. it may be obtained representations for stress intensity factor for two parallel
cracks in an infinite composite

1 1 %
- ECMdZIZ\/ﬁf(l) LK, =§C44né”2d2\/p_acp(x)dx, (28)

0
where the functions f(x)and g(x) should be determined from the system of Fredholm
integral equations (22).

It follows from Egs. (27), (28) that the presence of the free boundary and interaction of two
parallel cracks lead to nontrivial stress intensity factors K,, for cracks under normal rupture

(when radial shear is equal to zero) (for crack in infinite solid K, =0 [1]). On the other hand

308



8. Uluslar Arast Kirilma Konferanst Bildiriler Kitabt 7 — 9 Kasim 2007
Prooceedings of 8th International Fracture Conference 7 —9 November 2007
Istanbul TURKEY

for a near-surface crack under radial shear and zero normal stress as far as for two parallel
cracks under radial shear and zero normal stress the stress intensity factors K, are nontrivial

(for crack ininfinite solid K, =0 [1]). Meanwhile, both of the stress intensity factors K; and

Ky are effected by the initial stresss [, =s 5, (or extension ratio | , =1 ,) and also depended
on the distance h (or b ) from the crack to the free boundary, since the solutions f (x) and
g(x) of Egs. (19) and (22) depend on these parameters.

5. NUMERICAL RESULTS

The Bubnov-Galerkin method has been used in the numerical analysis of the system of
Fredholm integral equations of the second kind (19) and (22). Gaussian-quadrature formulae
were utilized for numerical integration. Results are given for the case of a near-surface crack
under uniformloads s (t) =s, and t (r) =t .

Below there are presented numerical results for case when composites can be modeled by
transversally-isotropic materials with valuesC,,,n,,l,,m,d;,k;,k,,k (i =12), which may be
obtained from Egs. (4), (5).

5.1.A laminar composite with isotropic layers.
The crack is located in plane x; =0 that is parallel to the layers of the composite and free

boundary of the solid. The mechanical macro-characteristics of this composite material may
be obtained by the elastic characteristics of its components and their volume concentration in
the composite [8]. The numerical results for a laminar composite, made of
aluminum/boron/silicate glass with an epoxy-maleinic resin are obtained.

Consider the example of a crack subjected to uniform normal stresss (t) =s,, t(r)=0.
Variations of the stress intensity factor ratio K, /K, (here K isthe stress intensity factor for
an isolated Mode | crack in an infinite composite) with the glass concentration factor c, are
displayed in Fig. 1. Solid lines are forb =h/a =0.25, dashed — forb =0.5. The lines 1 and
1" are for | , =0.99 (compressive initial (residual) stresses), 2, 27 — for |, =1.0 (initid
stresses are absent), 3, 3 —for |, =1.1 (tensile initial (residual) stresses). It is seen that the
stress intensity factor ratio depends greatly on the glass concentration factor ¢, as far as on
values of initial (residual) elongation (or reduction) ratio |,. Besides, for the values of
dimensionless distance from the crack to the edge of the composite b = 0.25 the values of
K, /K and K, /K are higher than forb =0.5.
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Figure 1. Figure 2.

In Fig. 2, the dependences of the stress intensity factor ratio K, /K, with the dimensionless
distance from the crack to the free boundary of the compositeb are given. The curves 1, 2, 3
and 4 corresponds to |, =0.99,1.0,1.05 and 1.1, respectively. The figure shows that the
values of stress intensity factor K, for small values of b are greater than stress intensity
factor K * for the isolated crack in the infinity composite.

5.2. A composite with stochastic reinforcement in the plane x, = const by short elliptical

fibers of finite length

In macro-volumes this composite may be modeled as a transversally-isotropic medium [8].
Below, the numerical results are given for a composite that consist of a carbon plastic with
stochastic reinforcement by short ellipsoidal carbon fiber (the fiber concentration is 0.7 and
the fiber aspect ratio is 10).

0,60

16
\ 0,45
14

Kn /K: \ 0,30
L2 KK \
3 \2\1\ 0,15 4 &
N1

1,0

—

0,00
090 09 102 108 114 1,20 09 09 102 108 114 120
| |

1 1

Figure 3. Figure4.

For a Mode Il crack subjected to uniform radial shear stresst (r) =t, and zero normal
stresss (t) = 0) the dependences of the stress intensity factor ratio K, /K and K, /K with
the initial (residual) elongation (or reduction) ratio | ; aredisplayed in Figs. 3, 4, respectively,
for valuesof b =0.25 (curves1), b =0.5 (curves2) and b =1.0 (curves3).

The curves have vertical asymptotes corresponding to the values of the critical reduction | |

obtained in the problem of local instability of the semi-infinite composite material with a
circular crack in compression oriented parallel to the crack plane [9].
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6. CONCLUSIONS

The obtained results alow making the following conclusions. (1) the presence of a free
boundary in a composite with initial stress and interaction of two parallel cracks leads to a
nontrivial stress intensity factors K, for cracks under normal stress and nontrivial K, for

cracks under radial shear; (2) the values of stress intensity factors increase with decrease of
distance between the crack and the half-space boundary b . As the relative distance b tends

to infinity the stress intensity factors tend to the values obtained for an isolated circular crack
in an infinite solid with initial stress; (3) the parameters of the composites material influenced
greatly on the values of stress intensity factors; (4) the values of stress intensity factors
increase abruptly when the initial reduction ratio | , tends to the value, with which there is a

local loss of stability of a semi-infinite composite containing a circular crack under
compression along the crack plane.
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