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ABSTRACT

Considered in this study are the axis-symmetric problems of fracture of composite materials
with interacting cracks, which are subjected to residual (initial) stresses parallel to the cracks
planes. An analytical approach in the framework of three-dimensional linearised mechanics of
solids is used. Two geometrical schemes of cracks placement are studied: a circular crack is
located parallel to the surface of a semi-infinite composite with residual stresses and two
parallel penny-shaped cracks are contained in an infinite composite material with residual
stresses. The cracks assumed to be under a normal or a radial shear load.

Analysis involves reducing the problems to the systems of Fredholm integral equations of the
second kind, where the solutions are identified with harmonic potential functions. The
representations of the stress intensity factors near the cracks edges are obtained. These stress
intensity factors are influenced by the residual stresses. The presence of the free boundary and
the interaction between cracks has significant effects on the stress intensity factors as well.

The parameters of fracture for two types of composites (a laminar composite made of
aluminum/boron/silicate glass with epoxymaleinic resin and a carbon/plastic composite with
stochastic reinforcement by short ellipsoidal carbon fibers) are analyzed numerically. The
dependence of the stress intensity factors on the residual stresses, physical-mechanical
parameters of the composites and the geometrical parameters of the problem are investigated.

Key words: composites, residual stresses, circular cracks, stress intensity factors

1. INTRODUCTION

Process of composites making often causes residual (technological) strain and stress as well as
defects (cracks, exfoliations) in composite materials. These residual stresses may influence
considerably on the cracks propagation in composites [1]. When the residaul stresses are
oriented parallel to the crack planes their influence on fracture parameters cannot be modeled
in the framework of the concept of linear elastic fracture mechanics with classical fracture
criteria Griffith-Irwin type because of missing stress components acting along cracks in the
criteria mentioned.
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A method of approach for the problem of failure of materials with initial (residual) stresses
acting along the crack surfaces was developed by A.N.Guz’ [1, 2] on the basis of relations of
the three-dimensional linearised solids mechanics. Some static and dynamic problems for
isolated cracks in homogeneous infinite solids were solved in [1, 3]. Solutions for a pre-
stresses isotropic homogeneous half-space with a penny-shaped crack under normal pressure
and radial shear are presented in [4, 5].

The aim of the present work is studying the influence of residual stresses on fracture of a
semi-infinite composite with a circular crack and on fracture of a infinite composite
containing two parallel disk-shaped cracks. The cracks assumed to be under normal or radial
shear loads. It is assumed that dimensions of the cracks are essentially greater that the
dimensions of structural elements of the composites, i.e. the macro-cracks are considered.
Under the assumptions mentioned the composite material are modeled by an anisotropic solid
with reduced mechanical characteristics.

2. PROBLEM  FORMULATION

The relationships of the second variant of small initial strain theory [1] are used. The initial
state caused by initial (residual) stresses is determined by geometric-linear theory. With the
reference to a system of Cartesian coordinates )3,2,1( =jx j , the components of the stress
tensor are given by ijσ  and the components of the displacement vector by ju .

An initial tension (compression) is applied in the 21xOx -plane. This results in a uniform initial
stress and strain state

const=≠== 0
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0 ,        (1)
where jλ  are the extensional (contractional) ratio while ijδ  is Kronecker’s symbol.

In [1, 3], the general solutions of linearised equations of equilibrium for the uniform initial
state in Eq. (1) are obtained in terms of potential functions. These solutions depend on the
roots 1n  and 2n  of the governing characteristic equations. For problems with axis-symmetry,
a solution for different roots (which is realized for composites materials) is given by
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where ),,( 3xr θ are cylindrical coordinates obtained from Cartesian coordinates )3,2,1( =jx j ,

( )2,1,3
2/1 =≡ − ixnz ii , ( )ii zr,ϕ  are harmonic potential functions. The values

( )2,1,,,,44 =idnlmC iiii  in Eqs. (3) depend on the initial stresses as far as on the material
properties. For linear material model
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For transversally-isotropic composites parameters ija , ijµ  are not depend on the initial

stresses 0
11σ  and obtained as
( ) 1

11 "'1 −−= aEa νν ; ( ) 12
33 1' −−= aEa ν ; ( ) 1

13 1' −+= aEa νν ; '''2'''21 2 νννννν −−−=a
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2.1. A near-surface crack in a semi-infinite composite
Let us consider a semi-infinite composite that is bounded by a plane hx −=3 . A penny shaped
crack with radius a  lies in the upper halfspace hx −≥3  in the plane 03 =x  with the centre on
the 3Ox -axes. The origin of the cylindrical coordinates coincides with the center of the crack.

On the faces of the crack, normal stresses )(rσ (symmetrical with respect to the plane 03 =x )
and radial stresses ( )rτ  (anti-symmetrical with respect to the plane 03 =x ) are specified. The
values of these stresses are assumed to be small in comparison with the value of the initial
stresses 0

11σ . Only axis-symmetric stress and strain distribution considered. The boundary of
the half-space is stress-free. The boundary conditions are

)(33 rt σ−=   ; ( )rt r τ−=3   ; ( )arx <≤±= 0,03  ,
033 =t   ; 03 =rt   ; ( )∞<≤−= rhx 0,3 .               (5)

Here ijt are the components of non-symmetric 1st Piola-Kirchhoff stress tensor.

The solid can be divided into two regions: 1- the half-space 3 0x ≥  and 2 – the layer 3 0h x− ≤ ≤ .
At the regions boundary outside the crack ( arx >= ,03 ) the stresses and the displacements
should all be continuous. This requires the following additional conditions
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Moreover, the stresses and displacements in the half-space 3 0x ≥ must vanish for large
values of 3x .

2.2. Two parallel cracks in an infinite composite
Let us consider two circular cracks with equal radiuses a , which are located in parallel planes

03 =x  and hx 23 −= with centers on the axys 3Ox . For this cracks placement there is a
symmetry of geometrical and stress-strain schemes of the problem with the plane hx −= .
Therefore, the problem for the space containing two parallel cracks may be formulated in
terms of a problem for a half-space with a near-surface crack. On the faces of the crack,
normal stresses )(rσ (symmetrical with respect to the plane 03 =x ) and radial stresses ( )rτ
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(anti-symmetrical with respect to the plane 03 =x ) are specified. Considering the upper half-
space hx −≥3 we have boundary conditions on the crack faces and on the plane hx −=

( )rt σ−=33 , )(3 rt r τ−=       ( 03 ±=x , ar ≤≤0 )
03 =u , 03 =rt  ( ∞<≤−= rhx 0,3 ).                                  (10)

Let us divide the solid into two regions: 1- the half-space 3 0x ≥  and 2 – the layer 3 0h x− ≤ ≤ .
At the regions boundary outside the crack ( arx >= ,03 ) the stresses and the displacements
should all be continuous. This requires the following additional conditions
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3. FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

The problems can be reduced to systems of dual integral equations and then to Fredholm
integral equations of the second kind. Referring to regions 1 and 2, the harmonic potential
functions 1ϕ  and 2ϕ  can be expressed in form of the Hankel integrals
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where ( )2,1,2/1 == − ihnh ii , )(0 rJ λ denotes the Bessel function. The functions ( )λA , ( )λB ,
( )λjD , ( ) ( )2,1, =jC j λ remain to be found.

3.1. A near-surface crack in a semi-infinite composite
Conditions (7)  (9) specified on the entire plane of 3 constx =  allow the determination of the
functions ( )λA , ( )λB , ( )λjD  in terms of functions ( ) ( )2,1, =jC j λ . From the Eqs. (6) and (8)
the following system of dual integral equations is obtained
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The derived system of dual integral equations (16) is solved using the procedure, which is
analogous to that presented in [6]. We seek the solution of the system of Eqs. (16) in the form
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where ( ) , ( )t tϕ ψ  are unknown functions, continuous together with their derivatives in the
interval [0, a].

The third and the fourth equations in (16) are automatically satisfied. Functions
( ) ( 1,2)jC jλ =  are expressible in terms of ( ) ( )λλ 21 , XX . The substitution of these quantities

into the first and second Eqs. (16) for ar <  gives the Fredholm integral equations of the
second kind, which may be given in the dimensionless form
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The kernels of integral equations (19) are
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3.2. Two parallel cracks in an infinite composite
Using the same procedure that in 3.1. it can be obtained the system of the Fredholm integral
equations of the second kind in the dimensionless form
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4. STRESS INTENSITY FACTORS

Similar to the classical case [7] we determine the stress intensity factors as coefficients with
singularities in the stress components near the tips of the crack
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2/1 rtarK

arI
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+→
−= π , ( )[ ] ( )0,2lim 3

2/1 rtarK rarII
−

+→
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4.1. A near-surface crack in a semi-infinite composite
System of simultaneous Fredholm integral equations of the second kind (19) may by solved
numerically. Than, based on the Eqs (2), (15), (17)-(20) the expressions for components of the
stress tensor can be obtained as
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Analysis of the Eqs. (24) shows that at ar +→
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From Eqs. (24), (25) it follows
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Using dimensionless variables and functions, it can be obtained
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where the functions )(ξf and )(ξg should be determined from the system of Fredholm
integral equations (19).

4.2. Two parallel cracks in an infinite composite
Similar to 4.1. it may be obtained representations for stress intensity factor for two parallel
cracks in an infinite composite

( )1
2
1

2244 faldCK I π−=  ; ( )∫−=
1

0
2

2/1
2442

1
ξξπ dgadnCK II ,                                (28)

where the functions )(ξf and )(ξg should be determined from the system of Fredholm
integral equations (22).

It follows from Eqs. (27), (28) that the presence of the free boundary and interaction of two
parallel cracks lead to nontrivial stress intensity factors IIK  for cracks under normal rupture
(when radial shear is equal to zero) (for crack in infinite solid 0=IIK  [1]). On the other hand
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for a near-surface crack under radial shear and zero normal stress as far as for two parallel
cracks under radial shear and zero normal stress the stress intensity factors IK  are nontrivial
(for crack in infinite solid 0=IK  [1]). Meanwhile, both of the stress intensity factors KI and
KII are effected by the initial stress 0

22
0
11 σσ =  (or extension ratio 21 λλ = ) and also depended

on the distance h (or β ) from the crack to the free boundary, since the solutions ( )ξf  and
( )ξg  of Eqs. (19) and (22) depend on these parameters.

5. NUMERICAL RESULTS

The Bubnov-Galerkin method has been used in the numerical analysis of the system of
Fredholm integral equations of the second kind (19) and (22). Gaussian-quadrature formulae
were utilized for numerical integration. Results are given for the case of a near-surface crack
under uniform loads 0)( σσ =t  and .)( 0ττ =r

Below there are presented numerical results for case when composites can be modeled by
transversally-isotropic materials with values kkkdmlnC iiii ,,,,,,, 2144 )2,1( =i , which may be
obtained from Eqs. (4), (5).

5.1.A laminar composite with isotropic layers.
The crack is located in plane 03 =x  that is parallel to the layers of the composite and free
boundary of the solid. The mechanical macro-characteristics of this composite material may
be obtained by the elastic characteristics of its components and their volume concentration in
the composite [8]. The numerical results for a laminar composite, made of
aluminum/boron/silicate glass with an epoxy-maleinic resin are obtained.

Consider the example of a crack subjected to uniform normal stress 0)( σσ =t , 0)( =rτ .
Variations of the stress intensity factor ratio ∞

II KK /  (here ∞
IK is the stress intensity factor for

an isolated Mode I crack in an infinite composite) with the glass concentration factor 1c  are
displayed in Fig. 1. Solid lines are for 25.0/ == ahβ , dashed – for 5.0=β . The lines 1 and
1’ are for 99.01 =λ  (compressive initial (residual) stresses), 2, 2’ – for 0.11 =λ  (initial
stresses are absent), 3, 3’ – for 1.11 =λ  (tensile initial (residual) stresses). It is seen that the
stress intensity factor ratio depends greatly on the glass concentration factor 1c  as far as on
values of initial (residual) elongation (or reduction) ratio 1λ . Besides, for the values of
dimensionless distance from the crack to the edge of the composite 25.0=β  the values of

∞
IIII KK /  and ∞

III KK /  are higher than for 5.0=β .
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   Figure 1.     Figure 2.

In Fig. 2, the dependences of the stress intensity factor ratio ∞
II KK /  with the dimensionless

distance from the crack to the free boundary of the composite β  are given. The curves 1, 2, 3
and 4 corresponds to 05.1,0.1,99.01 =λ and 1.1, respectively. The figure shows that the
values of stress intensity factor IK  for small values of β  are greater than stress intensity
factor ∞

IK for the isolated crack in the infinity composite.

5.2. A composite with stochastic reinforcement in the plane constx =3 by short elliptical
fibers of finite length
In macro-volumes this composite may be modeled as a transversally-isotropic medium [8].
Below, the numerical results are given for a composite that consist of a carbon plastic with
stochastic reinforcement by short ellipsoidal carbon fiber (the fiber concentration is 0.7 and
the fiber aspect ratio is 10).
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  Figure 3.     Figure 4.

For a Mode II crack subjected to uniform radial shear stress 0)( ττ =r  and zero normal
stress 0)( =tσ ) the dependences of the stress intensity factor ratio ∞

IIII KK /  and ∞
III KK /  with

the initial (residual) elongation (or reduction) ratio 1λ  are displayed in Figs. 3, 4, respectively,
for values of 25.0=β  (curves 1), 5.0=β  (curves 2) and 0.1=β  (curves 3).

The curves have vertical asymptotes corresponding to the values of the critical reduction 1λ
obtained in the problem of local instability of the semi-infinite composite material with a
circular crack in compression oriented parallel to the crack plane [9].
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6. CONCLUSIONS

The obtained results allow making the following conclusions: (1) the presence of a free
boundary in a composite with initial stress and interaction of two parallel cracks leads to a
nontrivial stress intensity factors IIK  for cracks under normal stress and nontrivial IK  for
cracks under radial shear; (2) the values of stress intensity factors increase with decrease of
distance between the crack and the half-space boundary β . As the relative distance β  tends
to infinity the stress intensity factors tend to the values obtained for an isolated circular crack
in an infinite solid with initial stress; (3) the parameters of the composites material influenced
greatly on the values of stress intensity factors; (4) the values of stress intensity factors
increase abruptly when the initial reduction ratio 1λ  tends to the value, with which there is a
local loss of stability of a semi-infinite composite containing a circular crack under
compression along the crack plane.
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