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ABSTRACT

Current use of advanced composites in aircraft structures has demonstrated the potential for
decreasing structural weight. But, the inherent complexities associated with the design and
analysis of carbon-fiber composite structures has restricted its use in post-buckling designs. In
conventional aircraft application, it is common practice to design stiffened metallic plate and
shell structures to buckle below design ultimate limit. The buckling and failure characteristics
of a thin composite skin reinforced by stiffeners, such as fuselage shell or wing components,
have to be determined explicitly. Post-buckled design allows buckling before design limit is
reached and the buckled structure can carry design ultimate load. Closed-sectioned hat
stiffened panels were studied by several researchers in order to show significant post-buckling
strength. Usually, the post-buckled design also results in significant weight savings when
compared to buckling-resistant design. In the present study, the aim was to explore
technologies for manufacturing integral composite structures to evaluate the manufacturing
concepts by determining the structural behavior of hat-stiffened composite panels under
compression loading. The experimental results of hat-stiffened panels for initial buckling and
post-buckled response under compression loading were compared with numerical results
obtained using linear and non-linear finite element analysis.
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APKA-T  PEK LER LE TAV YE ED LM  KOMPOZ T PANEL N
BÜKÜLME, BÜKÜLME SONRASI VE ÇÖKME ANAL

ÖZET

Uçaklarda geli mi  kompozit malzemelerin kullan  uçak a rl  önemli ölçüde
azaltmakdad r. Ancak, do as ndan gelen karma k yap  ve özellikle tasar m ve karbon fiberli
kompozit yap lar n analizindeki zorluklar ile birle ti inde bükülme-sonras  kullan m imkan
önemli ölçüde k tlanmaktad r. Uçaklarda al agelmi  tasar m anlay , peki tirilmi  metal
plaka ve kabuklar n en-büyük tasar m limitinin bükülme-dayan n hemen üstünde
tutulmas  esas na dayanmaktad r. Genellikle, bükülmeye-dayan kl  tasar mlara göre
bükülmeye müsaade eden tasar m felsfesi önemli ölçüde a rl ktan tasarrufa imkan
vermektedir. Bu çal man n amac , basma yükü alt nda çal acak apka tipi peki tiriciler ile
takviye edilmi  kompozit bir panelin yap sal davran  deneysel ve FE ile analiz etmek ve
bükülme sonras  k lmaya kadar panelin ne kadar yük ta yabilece ini ortaya koymakt r.
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Anahtar kelimeler: basma yükü, bükülme, bükülme sonras , apka-peki ticili kompozit panel, sonlu elemanlar
analizi

1. INTRODUCTION

The dominant part of an airframe is characterized by sheet material stabilized by stiffeners for
compressing loading. The use of thin skins implies that the structure is capable of supporting
load in excess of the critical local buckling load of the skin. The design of metallic aircraft
structures allows certain components to buckle below the design limit load although the same
confidence in the design of composite airframes has yet to be realized. Current use of
advanced composites in aircraft structures has demonstrated the potential for decreasing
structural weight. But, the inherent complexities associated with the design and analysis of
carbon-fiber composite structures has restricted its use in post buckling designs. The buckling
and failure characteristics of a thin composite skin reinforced by stiffeners, such as fuselage
shell or wing components, have to be determined explicitly. Post-buckled design allows
buckling before design limit is reached and the buckled structure can carry design ultimate
load. Most of the researchers concentrated on the post buckling of the structures, which are
reinforced with open-sectioned stiffener, such as I and J stiffeners [1-4].

Closed-sectioned hat stiffened panels were studied by several researchers [5-8] in order to
show significant post buckling strength. The post-buckled design usually results in significant
weight saving as well when compared to buckle-resistant design.

In the present study, the aim was to explore technologies for manufacturing integral
composite structures to evaluate the manufacturing concepts by determining the structural
behavior of hat-stiffened composite panels under compression loading. The experimental
results of hat-stiffened panels for initial buckling and post-buckled response under
compression loading were compared with the numerical results obtained using linear and non-
linear finite element analysis.

2. FINITE ELEMENT ANALYSIS

The initial buckling, post-buckled loads and failure loads were predicted for the panels using
commercially available finite element program (MARC).

2.1  Linear buckling analysis
The elastic buckling analysis was predicted by using an eigen value analysis based on a
perturbation of the linear stiffness matrix. The eigen value analysis, which calculates the
buckling loads, uses the following eigen value equation,

[K] u –  [Kg] u = 0         (1)

where K and Kg are the stiffness and geometric stiffness matrices respectively, u is the nodal
displacement sector, which represents the buckling mode shapes, and  is the load factor,
when multiplying the referenced applied load, gives the buckling load as:

    Pcr = P0 (2)

A linear eigen value buckling analysis yielded a critical buckling load of 90 kN in for the two
panels. These results were in good agreement with the experimental values in the region of
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linear response. Both the test and analysis curves start separation at a load of about 90 KN,
which indicates the initial buckling of the skin in the bay between the stiffeners.

2.2 Post-buckled analysis and failure
The post-buckled loads were predicted using nonlinear analysis technique. In this analysis, the
length of the panel was assumed to decrease 3.3 mm at the maximum. Stepwise and each step,
the following equilibrium equations were established.

Kt u(i) = Pt+ t – ft+ t
i-1      (3)

u t+ t
 (i) = u t+ t

 (i-1) + u         (4)

where Kt is the tangential stiffness matrix at the time t, u(i) is the iterative increment of nodal
displacements in the ith iteration, u t+ t

 (i) and u t+ t
 (i-1) are the nodal displacements at the step

t+ t and Pt+ t is the load vector, ft+ t
i-1 is the vector of internal stresses at step t+ t and

iteration (i-1). The Newton-Raphson Method was used to solve the above equation iteratively
until a specified convergence is reached.

After initial buckling occurred in the bay it was observed that major load would be carried by
the stiffeners in the way of transferring the load from the skin to the caps through the webs.
When local failure occurs in any of the webs or caps, the panel as a whole was assumed to
fail. In the analysis, maximum stress criterion was used to predict the failure load that means
any ply stress components exceeded its corresponding strength allowable was taken as the
ultimate failure load of the panel.

Figure 1.   Stacking sequence of hat-stiffened composite panel

3. EXPERIMENTAL PROCEDURE

3.1 Design and manufacturing of hat-stiffened composite panel
In a previous study of stiffened composite panels [1], a literature survey revealed that the
design of the ply orientation and number of plies depend on load magnitude and direction.
Some of the conclusions from this literature survey are as followings:

• the outer plies should be ± 45º for all elements of the structure to carry the shear loads,
• at least one 0º ply parallel to the load should be adjacent to the outer (± 45º) plies,
• it is more efficient to place the 90º plies next to the 0º plies in order to improve both

buckling and post-buckled strength.
• The use of 0º plies in the cap and skin would improve the structural efficiency, but the

number of these 0º plies should be carefully calculated to meet the design loads.
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• To minimize distortion, the plies should be oriented symmetrically about the mid-
plane of the various elements.

Figure 2. Composite panel co-cured with three integrated hat-stiffener

Based on [1] and the above guidelines, a hat-stiffened composite panel with a configuration
consisting of a flat skin which is a quasi-isotropic lay-up of 12-ply and three equally spaced
longitudinal hat-shape stiffeners, having a web of 12 plies, a flange of 5 plies and a cap of 26
plies, was designed, see Figure 1. Two panels, based on this design, were manufactured from
Hercules unidirectional IM7 carbon fiber pre-impregnated with Cytec’s Rigidite 5250-4 resin.
These panels were fully co-cured with three integrated hat-stiffener, of which the design is
shown in Figure 2.

Typical mechanical properties of the material used are presented in Table 1. The tooling for
the panel consisted of flat surface tool plate and solid male mandrels for the hats. The solid
male mandrels are made of aluminum. The tool surfaces were polished and coated with a
fluorocarbon mold release to allow the mandrels to be removed from the part.

All stiffener and skin plies were cut in accordance with fiber direction configuration using
templates and placed on top of each other by using lay-up technique. Due to the size of the
panel and handling considerations, stiffeners and skin prepreg laminates were laid up
separately and merged together in the later stage. A filler was inserted and pressed down with
a roller to fit the cavity, which was formed between skin and stiffener’s web-flange interface.
The whole assembly was then vacuum bagged for the autoclave cure. Two hat-stiffened
panels were fabricated using this tooling and co-curing technique. The panel ends were
machined parallel to ensure uniform loading and potted in an epoxy resin/fiberglass mixture.
The unloaded edges were not supported since the stiffeners give enough stiffness to ensure
that local buckling occurred before an Euler-type global buckling mode.
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Table1:     Material Properties for IM7/5250-4 unidirectional composite

Property      Value

Longitudinal tensile modulus             179.5 GPa
Longitudinal compressive modulus          138.4 GPa
Transverse tensile modulus                       10.6 GPa
Transverse compressive modulus              13.3 GPa
In-plane shear modulus                            5.0 GPa
Poisson Ratio                                                 0.3
Longitudinal tensile strength                         3.068 GPa
Longitudinal compressive modulus            1.694 GPa
Transverse tensile modulus                         48.2 M Pa
Transverse compressive modulus               257.6 MPa
In-plane shear modulus                              138.2 MPa
The flat surface of the panels were painted with white paint in order to observe the Moiré
fringes more easily since shadows and resultant fringes require sufficient light.

3.2 Testing
A compression test fixture was designed to accommodate the panels in a 50-ton DARTEC
universal testing machine, see Figure 3. The two panels tested were loaded in uni-axial
compression under displacement control so that catastrophic failure in compression could be
assessed. Based on the literature survey [1], the maximum out of plane displacement of the
stiffened composite panel would likely occur in the centre bay of the panel, near the mid-
length. Thus, most of the strain gages were bonded to the mid-length area of the panel in order
to capture critical strains in the buckled and post-buckled states. Back to back axial strain
gages were adhesively bonded to the selected locations on the skin, cap, web and flanges as
shown in figure 4.

Figure 3.   Test set-up

The compression load was increased at a constant rate until the ultimate failure of the test
panel occurred. Strain and load outputs were collected and processed by a data acquisition
system. The out-of-plane displacements of the buckled skin were qualitatively observed by
the use of the shadow Moiré Technique.
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Figure 4.   Strain gage locations on hat-stiffened panel
4. RESULTS

4.1 Experimental results

4.1.1 Buckling Load
The skin bay buckled into five half-wave lengths at an applied loading of 94.3 kN. The
critical load was calculated from back to back strain gages mounted at the buckle peaks.
Figure 5 shows the strain results for the strain gage pair 7-8. It was noted that the mode shape
underwent a gradual change characterized by an enlargement of the central half-wave length
along with the formation of a waist at the centre of this buckle peak resulting from a change in
local curvature. At a loading approximately 150 kN of panels, a dynamic mode jump to seven
half-wave lengths was observed. see Figure 6.

Figure 5.  Strain in the skin (bay)

Audible acoustic emission was first detected at a loading of about 65 kN with no visible
damage. This was associated with matrix cracking and more acoustic activity was detected at
higher load levels. At a loading above 65 kN, visible damage, associated with transverse shear
stress failure, was observed at the node-lines of the unloaded edges. This damage was
localized and did not propagate in an unstable fashion with increasing load. Total panel failure
was attributed to the local buckling of the supporting hat stiffeners.
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The initial buckling loads were determined from the load-strain curves as the load at which
either the readings from the back to back strain gages began to separate or the point of sudden
change in the slope of the curve. The initial buckling load was also estimated from the shadow
Moiré Fringe Patterns and the results from these two techniques agreed well.

4.1.2 Post Buckling and Failure Load
The failure mode was associated with compression failure of the caps, local delamination in
the flange-skin intersection and failure along the 45 º lines in the skin. The panels failed at an
average load of 316 kN. The maximum strain measured in the test panel was less than 0.48 %
(4804 micro-strain).

Prior to the failure of the panel, partial separation of the flange from the skin was observed as
sudden change in the shadow-Moiré pattern and some audible noises were heard, but it is
noted that the separation appeared to be local in nature.

The final average failure load of the panels is approximately 3.3 times higher than their
average initial buckling load. This demonstrated that the panels performed with post-buckled
capabilities.

 (a)               (b)

Figure 6.Mode jump from five to seven half-wave   lengths (a) five buckle-peaks from
shadow Moiré technique (b) seven buckle-peaks from FE analysis

4.2 FE Results
The skin on the two free edges buckled at a much lower load as predicted by the finite
element analysis. The linear buckling analysis predicted that the local buckling loads for the
edges and the bays were 66 kN and 90 kN, respectively. The average experimental buckling
load in the bay was 94.3 kN.

The contour pattern in each bay was predicted as five contours at the initial buckling load and
gradually evolved to seven in each bay before failure, see Figure 6. The change of contours
occurred at a load above 153 kN.

Predicted failure load, based on first ply failure criterion, was calculated as 296 kN.

5. RESULTS AND DISCUSSION

The initial buckling load determined from the load-strain curves agreed reasonably well with
the initial buckling load estimated from the Shadow Moiré fringe patterns. The predicted
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initial buckling load was 90 kN, which was approximately 4.5 % below the average
experimental result of 94.3 kN.

The experimental average failure load of two panels tested was 316 kN and the predicted
failure load was 296 KN, which was approximately 6.3 % below the average experimental
result of the panels. The final average failure loads of the panels were approximately 3.3 times
higher than their initial buckling loads. This verifies that the hat stiffened composite panels
have a good post-buckling capability.

6. CONCLUSIONS

A combined experimental and finite element analysis for the initial buckling and post-
buckling of hat-stiffened composite panels was presented. The predicted and experimental
initial buckling and failure loads were in good agreement. First ply failure technique and
maximum stress criterion to predict the failure load worked reasonably well. Panels exhibited
good post-buckling strength and failed by the local buckling failure of the hat stiffeners.
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