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ABSTRACT

The 3-D task for elliptic crack ( )2 2 2 2/ / 1x a y b+ ≤  of mode I with plastic zone in plane
0z =  is considered at uni-, bi- and triaxial loading in infinity. Material is suggested by ideally

elastoplastic with yielding condition in general form. The plastic zone is modeled by elliptic
ring with unknown sizes ,A B  along of the axis Ox and Oy. The stresses in the plastic zone
are determined from yielding condition and condition of plane strain in local coordinate
system connected with external contour of plastic zone. The following cases of loading are
considered: 1) uniaxial loading in infinity ;z pσ ∞ =  2) biaxial loading

( ), ;z x yp q gσ σ σ∞ ∞ ∞= = = 3) triaxial loading , , .z x yp q gσ σ σ∞ ∞ ∞= = =  The maximum

value of stresses 0
zσ  in plastic zone is analyzed in dependence from sign and values of

stresses ,q g  at von Mises yielding condition. In the first and third cases at q g=  the
sizes ,A B  of the plastic zone are obtained in analytical form. The limit cases of small-scale
yielding and fully plastic state are considered too.

Keywords: elliptic crack, plastic zone, multiaxial loading, plastic constraint  factor.

1.INTRODUCTION

The Dugdale crack model [1] was suggested to thin plates ( plane stress) only. Direct
application of this model to plane strain or 3-D problem is not correct due to triaxial stress
state at the crack front. Guo [2] and Neimitz [3] used a semi-analytical method to rationalize
effects of out-of-plane and in-plane constraints for through- thickness cracked bodies.
Analysis in these works is focused on small- scale yielding  (SSY) conditions in which the
crack-tip plastic zone is fully enclosed  by K   or K T−  dominated elastic field.
Galatenko proposed the Dugdale-type crack model to plane strain [4] and to circular disk-
shaped  crack [5]  without limitations on the plastic zone sizes. Dependence of the plastic
constraint factor (PCF) m  on external loads level and loads acting parallel to the crack plane
was obtained for Treska and von Mises yielding conditions. At SSY conditions the PCF (

km m≡ ) is limited by imposed restrictions on the T-stresses.
The report presented deals with extension of the proposed crack model to elliptic crack. The
results are compared with those for circular disk-shaped crack.
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2. MODEL OF THE  ELLIPTIC CRACK

Let us consider 3-D volume with elliptic crack { }2 2 2 2: / / 1S S x a y b+ ≤ located in plane z=0,

under acting of the triaxial stresses at infinity , , .z x yp q gσ σ σ∞ ∞ ∞= = =  The stresses p are
tensional and q, g can be as tensional as compression. The material is assumed to be elastic-
perfectly plastic with yielding condition

( )1 2 3, , ,YF σ σ σ σ=                                                               (1)
where 1 2 3, ,σ σ σ  are principal stresses, Yσ  is a yield stress.
The plastic zone S∆  at the crack front is modeled by elliptic ring in crack plane with
unknown sizes A, B of the external contour. In the plastic zone the stresses

( )0 0 0 0 0 0, , , 0z x y xy xz yzσ σ σ τ τ τ= =   satisfy to yielding condition (1). After subtraction of the applied

stress state , ,z x yp q gσ σ σ∞ ∞ ∞= = =  the auxiliary task can be obtained for plastic zone
S∆

0 0 0 00, ( , ) : , , , ;z z x x y y xy xyz x y S p q gσ σ σ σ σ σ τ τ= ∈ ∆ = − = − = − =                     (2)

In the local orthogonal coordinate system ntz  (Fig.1), located at the external plastic zone
contour the expression (2) have the form

0 0 (1) 0 (1) 0 (1)0, ( , ) : , , , .z z n n n t t t nt nt ntz x y S pσ σ σ σ σ σ σ σ τ τ τ= ∈ ∆ = − = − = − = −                 (3)

Here (1) (1) (1), ,n t ntσ σ τ  are stresses in plane 0z =  without crack which are connected with
,x yσ σ∞ ∞  by relations
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where θ  is angle between  normal n and axis Ox.
It is well known [6] that asymptotic stress field in the coordinate system ntz corresponds to
plane strain

, ( ) 2 , 0z n t z n z ntσ σ σ ν σ σ ν σ τ= = + = = at 0, 0.z r= →                              (4)
The stresses are limited and continuous on the boundary of elastic and plastic zones. Then
from (3),(4)  we have

0 0 (1) 0 (1) 0 0 (1); 2 ( ); 0.z n n t t z nt ntp pσ σ σ σ σ ν σ τ τ− = − − = − − =                                 (5)
The yielding condition (1) and relations (5) substitute the full equations system to determine
the stresses in plastic zone. In particular, for von Mises yielding condition the obtained system
have the form

0 0 (1) 0 (1) 0 0 (1)

0 0 2 0 0 2 0 0 2 02 2

; 2 ( ); ;

( ) ( ) ( ) 6 2 .
z n n t t z nt nt

z n n t t z nt Y

p pσ σ σ σ σ ν σ τ τ

σ σ σ σ σ σ τ σ

 − = − − = − =


− + − + − + =
                                 (6)

After calculating of stresses in the plastic zone the boundary task of elasticity theory for crack
S S+ ∆  can be formulated

( )
0

( , ) : ;
0, ( , ) : , .

, : 0.

z

z z

z

x y S p
z x y S p

x y S S u

σ
σ σ

∈ = −
= ∈ ∆ = −

∉ + ∆ =
                                            (7)

The further solution of problem (7) is similar to the Leonov-Panasyuk-Dugdale problem [7].
The stresses 0

zσ or PCF 0 /z Ym σ σ=  characterizes constraint effects on the crack front.
The solution (7) gives the following formula for 0

zσ

( )20 2 2 21 3(1 4 ) ( )cos 2 4 3( cos 2 ) 3 sin 2 ..
2(1 2 ) 2 2 2 2z Y

q g q g q gp q g p q gσ ν θ σ θ θ
ν

 + + −
= − + − − + − − − − − −  

                                                                              (8)
In according to (8) the stresses 0

zσ  depend from angle θ . The extremum  points can be
obtained from the necessary condition 0 / 0zd dσ θ =  which gives the following equation

( ) ( )22 2 2 3sin 2 4 3( cos 2 ) 3 sin 2 ( )cos 2 0.
2 2 2 2Y

q g q g q gq g p q g p q gθ σ θ θ θ
 + − +

− − − − − − − + − − = 
 

(9)
Equation (9) has a solution at three cases:
1) , 0.q g p= ≠  This case corresponds to axisymmetric loading when 0

zσ  independent of θ
and has the form

0 2 21 (1 4 ) 4 3( ) .
2(1 2 )z Yp q p qσ ν σ

ν
 = − + + − −
 −

                                     (10)

In particular, at 0, 0q g p= = ≠  we have uniaxial loading z pσ ∞ =  at which
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0 2 21 (1 4 ) 4 3 .
2(1 2 )z Yp pσ ν σ

ν
 = − + −
 −

                                            (11)

Results at these schemes of loading are analyzed in paper [8].
2)  Condition

( )22 2 2 34 3( cos2 ) 3 sin 2 ( )cos2 0
2 2 2 2T

q g q g q gp q g p q gσ θ θ θ
+ − +

− − − − − − + − − = ,

(12)
after transformations, can be written as

(13)

The last equation corresponds to fully ductile fracture because the external loads satisfy to
yielding condition.
3) sin 2 0.θ =  The critical points ( )/ 2 0,1,2,3k kθ π• = =  can be obtained which coincide
with ends of the axes of elliptic crack.
We consider the third case at bi- and triaxial nonaxisymmetric ( )q g≠  loads on infinity.

3. RESULTS AND DISCUSSION
3.1. Biaxial loading

1. At , , 0z x yp qσ σ σ∞ ∞ ∞= = =  the distribution 0
zσ  are determined by formulas

0 2 2 2 21 3(1 4 ) cos2 4 3( cos2 ) 3 sin 2 .
2(1 2 ) 2 2 2 2

.

z T
q q qp q p qσ ν θ σ θ θ

ν

 
= − + − + − − − − −  

(13)

Fig.2 shows the dependence of PCF m  on angle θ  at different stresses / Yq σ and 0,3.ν =
The curves  1,2,3,4,5 correspond  to values / 0,5; 0,1;0;0,1;0,5.Tq σ = − −
For given load the maximum values equal

( ) ( ) ( )2 2 2 22 .Yq g g p p q σ− + − + − =
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In particular, at q pν=  we have from the second expression of (14)

( )

2 2
0 0
max

4 3
( / 2) .

2 2 1 2
T

z z
pp σ

σ σ θ π
ν

−
= = = +

−
                                               (15)

The result (15) corresponds to plane strain case [4] for central crack 2b .
2. At z pσ ∞ = y gσ ∞ =  we have the following distribution

0 2 2 2 21 3(1 4 ) cos 2 4 3( cos 2 ) 3 sin 2 ..
2(1 2 ) 2 2 2 2z T

g g gp g p gσ ν θ σ θ θ
ν

 
= − + + + − − + − −  

(16)
Dependence m  on angle θ  is shown on Fig.3. Maximum m takes place on the ends of larger
axis of ellipse at 0g >  and on the ends of smaller axis at 0g < . When g pν= , the ends of
larger axis of elliptic crack have the same constraint that at plane strain.

3.1. Triaxial nonaxisymmetric loading

In general case of triaxial loading the distribution 0
zσ  is determined by formulas (8). Triaxial

loading on infinity can be presented as superposition of axisymetric (q=g) state and uniaxial
tension or compression along of one axis of elliptic crack. The first state doesn’t influence on
the position of critical points. Consequently, their position is determined by the second state.
Fig.4  shows m θ−  dependence at values of stresses acted along of elliptic axes : 1 -
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0,5 , 0,1 ;T Tq gσ σ= =    2  - 0,1 , 0,5 ;T Tq gσ σ= =    3  - 0,5 , 0,1 ;T Tq gσ σ= = −   4  -
0,5 , 0,1 ;T Tq gσ σ= − =  5 - 0.q g= =

In the first and third schemes of loads maximum m takes place at / 2θ π= . When g q>
then maximum m  is realized  at 0.θ =

4. CONCLUSIONS

Analyzing the results, we can formulate a rule for determination of the maximum constraint
points of plastic strains at the elliptic crack front under multiaxial loading: the maximum
constraint (maximum 0

zσ  ) occurs at those points on the crack periphery where the external
tangential tensile stress are maximum.  It means that in dependence on stresses ,q g , acted
along of elliptic crack axes, the fracture beginning  can be  on the ends of larger axis in spite
of  minimum of stress intensity factor in these points.
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