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ABSTRACT

In this study the approach to studying the problems of fracture under initial stresses acting
along cracks proposed by Guz’ (1983) is expounded. Other approaches and concepts the
problem concerned are briefly discussed. Some author’s results for isolated and near-the-
surface cracks are given below.
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1. INTRODUCTION

Under consideration is the problem of fracture of solids caused by initial stresses acting
parallel to the crack surfaces. As well known this problem principally can’t be modeled in the
framework of classical linear fracture mechanics with classical fracture criteria Irwin-Griffith
type or critical crack opening criterion because of simply missing stress components acting
along the cracks in the criteria mentioned (for simplicity, the pure cases of the homogeneous
states in the solids with system of parallel cracks caused by initial stresses parallel crack
surfaces are investigated). Therewith it is intuitively obvious that initial stresses may
appreciably influence the process of fracture (follow for example the ‘visualized’ experiments
concerning the separating of initially stressed bars or stretched strings: see Guz’ (1983)).

An analytical approach based on the relations of the three-dimensional linearised solid
mechanics was presented by Guz’ (1980, 1983, see also 1999)). Detailed showing of the
concepts and results in the framework of this approach is through the whole study from the
next section. Below in this section we only briefly mention another approaches and concepts
concerning the problem.

In a large scale, another approaches to include initial stresses parallel to the crack surfaces
involves or using non-brittle (plastic) fracture because of entering the corresponding stress
components in an yield condition or constructing on the basis of classical linear theory
fracture as named approximate (oversimplify, estimated) schemes.

As for plastic fracture, the comprehension of the situation may be acquired from every capital
study on the subject. We mark only that obtaining specific results in this case is very difficult
taking into account the very complexity of the mathematical side of the problem.
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An approximate schemes are known long (away back in the thirties of the past century, see for
example Obreimoff I.W. (1930)). In these schemes the stress components parallel to the
cracks surfaces is introduced in the consideration rather artificially (for example, is introduced
in the boundary conditions, etc.) on the base of some assumptions, which are not derived from
strict equations for elastic body. Anyhow, the results obtained in such manner need the
verification.

2. APPROACHES AND CONCEPTS

When in the body initial stresses parallel to the cracks surfaces are acting two classes of
fracture problems are separated depending on there is or no the additional rather small stress
field (in comparison with basic initial stress field, see Guz’ (1983)).

In  the absence of such additional stress field the class of fracture problems named as the
problems of fracture mechanics under compression along the cracks is under consideration.
The approach for studying of these problems is based on applying of relations of the three-
dimensional  linearised solid mechanics. The concept of fracture is : the beginning of the
fracture process is determined by the mechanism of the local instability near the cracks. In the
moment when the initial stresses are reaching their critical values (as values corresponding the
local instability) the process of fracture is initiating. Details are given in the book Guz’ A.N.,
Dyshel M.Sh. and Nazarenko V.M. (1992) or review Guz’ A.N., Nazarenko V.M. (1989a,
1989b).

The present study is devoted to the class of fracture problems named as the problems of the
brittle fracture of solids with the initial stresses acting along the cracks surfaces. In this case
we have an additional stress field small in comparison with the basic initial stress field.

The approach is developed on the basis of relations of the three-dimensional linearised solid
mechanics (Guz’ A.N. (1983, 1992) presented general formulations of fracture mechanics
problems with respect to the effect of the initial stresses). Also fracture criteria of Griffith-
Irwin type were constructed. These criteria formulate in substance the concept of fracture in
this case: the fracture process is in progress (crack is growing) if the certain combination of
integral parameters of additional stress field near the crack tips (namely, stress intensity
factors) is reaching its critical value. It should be noted that the stress intensity factors depend
on the initial stresses values.

From the point of view of the mathematical apparatus used the following basic steps were
made. Firstly, we are premising from the equations of geometrically nonlinear elasticity
theory (Lurie A.I. (1990)). The field of initial stresses satisfies the equations mentioned.
Secondly, we consequently derive the linearised relationships (geometrical ones, equation of
motion, boundary conditions, stress-strain elasticity conditions) from the corresponding
relationships of nonlinear elasticity. The values of initial stresses enter the linearised
relationships as the coefficients. In the third, we consider initial stresses acting along the
crack surfaces so that the initial stress state is homogeneous (we also consider as generally
received the crack to be the mathematical cut). For the homogeneous initial stress state we
used the common solutions of linearised equations somewhat similar to common solutions for
the anisotropy (namely, transverse isotropy) body in the linear elasticity. And, in forth, for the
formulated boundary problems we use the analytical functions apparatus for plane problems
or the integral transformations apparatus for space problems.
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3. PROBLEMS FORMULATIONS

Now we formulate problems for two important cases, namely, for isolated crack and for near
the surface crack.
As an example, for isolated crack we formulate the problem for the normal-rapture crack for
the plane deformation case (Guz’ A.N. (1983)).

Let us consider indefinite space containing the crack of the length a2  which is situated in the
plane 31Oyy  and is infinite in the 3Oy  direction ( +∞<<−∞±=≤ 321 ;0; yyay ). The
subscripts ‘+’ and ‘-‘in the expression 03 ±=y denote, respectively, the upper and lower crack
surfaces. Consider the plane 21Oyy . The normal load on the crack boundaries is symmetric, so
on the boundary conditions for the bottom halfspace 02 ≤y  are

ayQuayQygQ >==≤=−= 1212121122 ,0,0;,0),( . (1)
Hear iy  is the Cartesian coordinates in the deformed state, ijQ is the component of stress
tensor measured per unit area in the deformed state, ju  is the component of the displacement
vector.
Introducing the complex variables

21 yyz jj µ+= . (2)
we may express the stress and displacement components in the terms of analytic functions

)( jj zΦ  in the following form (the case of non-equal roots 21 µµ ≠ is considered hear for
example, in the terminology of (Guz’ A.N. (1983))
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The roots ,2,1, =kkµ  and the values of coefficients ;2,1,,,, )()( =kjik
i

k
ij γγ  are determined by

the constitutive equations of material (for example, for highly elastic materials ones are
determined in accordance with the form of the elastic potential function).

Then, by introducing new analytical function )( jzZ  instead of ,2,1),( =Φ jz jj

)()();()();()( '
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221011 jj zZzZzZzzZz =−=Φ=Φ
γµ
γµ (4)

we eventually obtain the Keldish-Sedov boundary problem for finding in the bottom halfplane
the analytical function )( jzZ

1
1 1 2(1)

1 1 2

( )Re ( ) ; , 0;

Im ( ) 0, ; 0.

g yZ y y a y
C

Z y y a y

= − ≤ =

= > =
(5)

In the analogous manner the formulations of the plane problems for isolated lateral shear and
longitudinal shear cracks are building (detailed narration see in (Guz’ A.N.(1983)) ).
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For near the surface crack as an example we consider the formulation of the axisymmetrical
problem for a halfspace containing a penny-shaped crack under radial shear (Nazarenko
V.M., Bogdanov V.L. and Altenbach H. (2000)).
We will consider a semiinfinite solid containing a penny-shaped crack parallel to the free
surface. The crack of the radius a is situated in the upper halfspace hx −≥3 in the plane

03 =x with the centre on 3Ox -axis (here 3,2,1, =jx j  is the system of Cartesian coordinates
referred to the non-deformed state). An initial compression is applied in the 21xOx -plane so
that a uniform initial stress and strain state is realized:

0 0 0
33 11 22
0

1 2 3

0, 0,

( 1) ; , .; , 1, 2,3.m jm j j j

S S S

u x const j mδ λ λ λ λ λ

= = ≠

= − = ≠ = =
(6)

Here the components of the displacement vector are given by ju  and the components of the

symmetric stress tensor in the initial state are 0
ijS ; 0

ju are components of the displacement
vector corresponding to the initial stress. The superscript '0'  denotes the parameters referred
to the initial state. The values ,3,2,1, =jjλ  denote the extensional (or contractional) ratio
along the jx -axis while ijδ is the Kronecker’s symbol.
To describe the actual (‘disturbed’) state the Kirchhoff nonsymmetric stress tensor ijt (or also
in other terms Kirchhoff-Lagrange or 1-st Piola-Kirchhoff stress tensors are in use) is applied
here (the components of this stress tensor measured per unit area in the undeformed state).

The boundary conditions on the faces of the crack and on the boundary of the halfspace we
may formulate as follows:

33 3 3

33 3 3

0, ( )             ( 0,0 ),
0, 0                    ( ,0 ),

r

r

t t r x r a
t t x h r

τ= = − = ± ≤ <

= = = − ≤ < ∞
(7)

where 3,, xr θ  are cylindrical coordinates obtained from Cartesian coordinates jx . In other
words, on the crack faces equal and oppositely-directed stresses )(rτ are applied
(antisymmetrically with respect to the plane 03 =x , radial shear) while the halfspace boundary

hx −=3  is free of stress. It should be noted that the values of stresses )(rτ  are supposed small
in comparison with the value of 0

11S .
Considering, for example, incompressible solids we can write the linearised equilibrium
equation in the displacements ju  in the form

2
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while the stress tensor ijt can be obtained from

0
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The values ijijij a,,µκ αβ  and mq  depend on material properties (these also result in the
linearised constitutive law, that is the relation between Kirchhoff stress tensor ijt  and Green
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strain tensor ijε , see, for example, in (Guz’ A. N., Dyshel M. Sh. and Nazarenko V.M.
(1992)).

Following (Guz’ A. N. (1999)), by introducing potential harmonic functions
,2,1,)(),,( 3

2/10 == − ixnzzr iiiiφ (10)
for different root 0

2
0
1 nn ≠

or potential harmonic functions
,)(),,(),,( 2/10

1111
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for equal roots 0
2

0
1 nn = ,

we can obtain the general solutions of Equations (8) in the form
for different roots
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for equal roots

1

0 1/ 2 0 0 0 0
3 1 1 2 1 1 1

1
2

0 0 0 0 0 0 0 0 0
33 44 1 1 2 2 1 1 1 1 1 2

1 1 1

0 0 0 0 0
3 44 1 2 1 1 1

1

,

( ) ( 1) ,

[( ) ],

[( ) ].

r

r

Fu z
r r

Fu n m m F m m z
z

F Ft C d l d l d l d l z
z z z

Ft C d d F d d z
r z

φ

−

∂ ∂
= − −

∂ ∂
∂

= − − − Φ −
∂

∂ ∂Φ ∂
= − − −

∂ ∂ ∂
∂ ∂

= − − Φ −
∂ ∂

(13)

Here

1z∂
∂

≡Φ
φ , (14)

and the values 0000
44 ,,, iii nlmC  and )2,1(0 =idi  depend on the initial stresses as far as on the

material behaviour model (see details, for example, in (Guz’ A. N., Dyshel M. Sh. and
Nazarenko V.M. (1992)).
So, using (12) or (13) we can re-formulate boundary problem (7) in the terms of potential
harmonic functions (10) or (11) for different or equal roots case correspondently. Such re-
formulation then allows to use the integral transformations apparatus (Fourier type for plane
and Fourier-Henkel type for space problems).
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4. CRITERIA, SOME RESULTS AND CONCLUSION

Griffith-Irwin type fracture criteria
Similar to the classical case when there are no initial stresses acting along the crack (Griffith
A.A. (1920)) we also can write for the case under consideration the basic energy conservation
equation for crack advance in the analogous form

00 =+ Σ
eAU δδδ , (15)

where 0Uδ  - the internal energy which is determined by the surface energy, eA Σδδ  - the energy
flux into the crack tip due to the decrease of the strain energy coursed by the crack tip
advancing by some value of lδ ( Σδ  is the increment of the crack surface area; for example,
for the crack located in 31Oyy -plane:

+∞<<−∞±=≤ 321 ,0, yyay , (16)
measured per unit length along the 3Oy  axis value Σδ  is lδδ 2=Σ ).
Following Irwin (Irwin G.R. (1958)) the energy flux eA Σδδ  may be defined through the
corresponding components of the stress tensor and displacement vector near the crack tip on
the crack prolongation. For example, for the crack case (16) the energy flux is (Guz’ A.N.
(1992), also see notation of section 3)

.)( 3231212
0

22 dxuQuQuQA
l

e ++−= ∫Σ

δ

δδ , (17)

Similar to the classical case we can determine the stress intensity factors as coefficients with
singularities in the corresponding stress components near the tips of the crack, for example for
the crack case (16)

1/ 2
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1/ 2
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1/ 2
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[2 ( )] ( ,0);
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[2 ( )] ( ,0).
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I
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π

π

→

→
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= −

= −

= −

, (18)

Here r  ( 1)(, <<−> arar ) is the distance from the crack tip in the 1Oy -axis direction.
Finally using formulae type (17), (18) and relation between stress tensor and displacement
vector we can obtain the criteria (15) in the next common form as Griffith-Irwin type fracture
criteria for material with initial stresses acting along cracks faces

020
3

20
2

20
1 Γ=++ IIIIII KCKCKC , (19)

where 0
3

0
2

0
1 ,, CCC  are the coefficients depending on material properties, crack type (form and

location) and the values of initial stresses; 0Γ  is material constant defining by material surface
energy γ and generally speaking also depending on initial stress values. One or two from
three stress intensity factors IIIIII KKK ,,  may be equal to zero. Note that in lack of initial
stresses the criteria (19) transfer in the classical fracture criteria of Griffith-Irwin type (i.e.,

00 =ijS  and stress tensor ijQ  or stress tensor ijt  is treated as Cauchy’s stress tensor ijσ  in the
classical theory of elasticity).
Then if crack form and crack location are determined the main problem is the finding of the
intensity stress factors IIIIII KKK ,,  for the acting initial stresses 0

ijS  and verification of the
fracture criterion (19).
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Some results
We guess it is not worth here to particularize rather complicated mathematical methods of
solving the formulated boundary problems (type of (1) or (7)) and the mathematical apparatus
used (the very details are given in, for example,  Guz’ A.N. (1980), Guz’ A. N. (1983), Guz’
A.N. (1992), Guz’ A. N., Dyshel M. Sh. And Nazarenko V.M. (1992), Babich V.M., Guz’
A.N. and Nazarenko V.M. (1991), Guz’ A.N, Nazarenko V.M. and Nikonov V.A. (1991),
Nazarenko V.M., Bogdanov V.L. and Altenbach H. (2000) ). It is worth to say only that the
mathematical manipulations result in: for isolated crack – the Keldish-Sedov problem for the
analytical functions in the plane case and the mixed problem for harmonic potential functions
in the space case, for near the surface crack – the system of  Fredholm integral equations.

Hereafter we will enounce essential results with focus on space axisymmetric problems and
near the surface crack. As for the plane problems for isolated crack only the basic
conclusions will be written out below (see details in Guz’ A.N. (1992)).

Internal penny-shaped cracks.

Isolated normal-rapture crack.
The axisymmetric boundary problem for the crack of radius a  located in the 03 =y -plane as

}0;20;0{ 3 ±=<≤<≤ yar πθ (20)
in 3,, yr θ  (or 2,1,3

2/1 =≡ − jynz jj ) cylindrical coordinates obtained from Cartesian ones
,,, 321 yyy  is formulated for the upper halfspace 03 ≥y as following:
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(21)

 (we follow Guz’ A. N. (1983) and Guz’ A.N. (1992) with its accepted notations; )(rzσ  is the
normal symmetric with respect to 03 =y -plane loading on the crack faces).

The components 33Q  and rQ3  of the stress tensor Q are determined near the crack tip
in its plane by the formulas

IKarQ 2/1
33 )](2[ −−= π provided ,0, 3 => yar  and 03 =rQ  under ,03 =y  (22)

and the stress intensity factors are
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∫
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It is obvious that it the stress intensity factor IK  in this case is not depending on the initial
stresses 0

22
0
11 SS =   while the crack faces displacements near the crack tip 3u  is depending on

initial stresses as well as coefficient 0
1C  in (19). Displacement 3u  is given as following for

equal and unequal root 21,nn  cases:
Equal roots 21 nn =  case
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Unequal roots 21 nn ≠  case

,
)1)(1)((2

2
21221144

21
3 mmnlnlC

mmKrau I ++−
−−

=
π

.ar < (25)

In (24), (25) the values ,2,1,,,44 =ilmC ii  depend on the initial stresses as far as depend on the
material properties.

Near the free surface normal-rapture crack.
The crack of the radius a is situated in the upper halfspace hx −≥3 in the plane 03 =x with the
centre on 3Ox -axis (here 3,2,1, =jx j  is the system of Cartesian coordinates referred to the
non-deformed state). Following Babich V.M., Guz’ A.N. and Nazarenko V.M. (1991), the
axisymmetric boundary problem under initial stresses (6) may be formulated  in a manner:

33 33 3

33 3 3

( ), 0          ( 0,0 );
0, 0               ( ,0 )r

t r t x r a
t t x h r

σ= = = ± ≤ <

= = = − ≤ < ∞
(26)

(see notation of section 3).

The mathematical part of investigation was carried out using Henkel’s integral
transformations along the radial coordinate r  .The problem was reduced to a system of paired
integral equations and finally using the method proposed by Uflyand Ya.S. (1977) a system of
Fredholm’s integral equations of the second kind with additional condition was obtained
(utilizing the solution of Schlemilch’s integral equation):
(we are terminating here by the Unequal roots 0

2
0
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 (27)

Equations (27) are given in dimensionless form. Unknown constant const  is attached to the
additional condition (third equation in (27)).

The kernels ,2,1),,(),,( =iNM ii ηξηξ   of the integral equations are defining as:
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Here β  is dimensionless distance from crack plane 03 =x  to the free boundary hx −=3 .

Firstly it should be noted that in the case of ∞→β  we obtain the isolated crack. It may be

shown that under ∞→β  we have 0,01,0,0 2121 →→→→ NNMM β
β

, and then
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0=const  (from additional condition),
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From (27), (28) we can obtain the stress intensity factors IK  and IIK  in the form:
1

1/ 2 0 0 0
33 44 1 1

1 0

1/ 2 0 0 1/ 2 0
3 44 1 1

2

[2 ( )] ( ,0) ( ) ,
2

[2 ( )] ( ,0) ( ) (1).
2

lim

lim

I
r a

II r
r a

k aK r a t r C d l f d
k

k aK r a t r C n d g
k

π
π ξ ξ

π
π β

→

−

→

= − = −

= − = −

∫
(32)

Let us note that according (32) stress intensity factors IK  and IIK  both are not equal zero and
also depend on initial stresses.
If we will take into account for the case ∞→β  (isolated crack) the relations (29), (30), we
obtain the result

,0,)(2 limlim
0

22
=≡

−
−=≡

∞→

∞

∞→

∞ ∫ IIII

a

II KK
ta
dttt

a
KK

ββ

σ
π

(33)

which coincides with one above mentioned (23) accurate to the notation )()( rrz σσ −=  . In
particular, for the uniform internal pressure
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constpr =−= 0)(σ (34)
the value ∞

IK is

π
apK I

02
=∞ (35)

Numerical examination of the system of equations (27), (28) was carried out by the Boubnov-
Galerkin method with the system of orthonormal on the interval ]1,0[∈ξ  biased Legendre’s
polynomials K3,2,1),12(12 1 =−− − kPk k ξ . Numerical integration was conducted using
Gauss quadrature formulas. The highly elastic material with Treloar potential (Treloar L.R.G.
(1955)). In Table 1 are given the values ∞

II KK /  for dimensionless distance
30.1;05.1/ == ahβ  and extensional (contractional) ratio 1λ = 1.30 (extension), 0.99 (initial

stresses practically are absent), 0.80 (compression). The initial stress )( 1
0
11

0
11 λSS =  depends on

ratio 1λ  (or 1λ  depends on 0
11S ) through the elastic potential function. The results are given for

the case of uniform internal pressure (34).

Table 1

β 30.1=λ (extension) 99.01 =λ (initial stresses rather small) 80.01 =λ (compression)
1.05 1.2014 1.2067 1.9721
1.30 1.1320 1.1327 1.4304

Data in Table 1 shows that for the subsurface crack stress intensity factors essentially depend
on the initial stresses. Extension leads to the decrease of IK while compression increases the
value IK . For the case 99.01 =λ  the results of Table 1 are much closed (disagreement is less
then 1 %) to the known results (see Kassir M.K. and Sih G.C. (1975)) for the classical elastic
theory case (there are no initial stresses).

Isolated crack under radial shear.
The axisymmetric boundary problem for the crack (20) of radius a  is formulated for the
upper halfspace 03 ≥y as following (Guz’ A.N. (1992)):

33 3 3

3 3

0, ( )        (0 , 0)
0, 0                   ( , 0)

r zr

r r

Q Q r r a y
u Q a r y

τ= = − ≤ < =

= = < < +∞ =
(36)

We assume that on the crack faces equal and oppositely-directed stresses )(rzrτ− are applied
(antisymmetrically with respect to the plane 03 =y ).

The stress intensity factors defined by (23) in the case under consideration are:
(For the cases both equal 21 nn =  and unequal 21 nn ≠  roots)

∫
−

==
a

zr
III

ra
drrr

aa
KK

0
22

2 )(12;0 τ
π

. (37)

Analogously to the case of isolated normal-rapture crack the stress intensity factor IIK  in this
case is not depending on the initial stresses 0

22
0
11 SS =   while the crack faces displacements

near the crack tip ru  is depending on initial stresses as well as coefficient 0
2C  in (19).
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Near the free surface crack under radial shear.
Rather extensive formulation of the problem is given as an example in Section 3, see (6)-(14).
In the result of somewhat analogous mathematical procedure (see Nazarenko V.M., Bogdanov
V.L. and Altenbach H. (2000) ) as for normal-rapture subsurface crack the next system of the
Fredholm’s integral equations in dimensionless form was obtained:
(here we will quote the relationships for the Unequal roots 0

2
0
1 nn ≠  case only)

1 1
1 1

11 12
0 0
1 1 / 2

'2 2 2
21 22

0 0 0

0 0 1/ 2 0
44 1 1

4 4( ) ( ) ( , ) ( ) ( , ) 0;

4 4 4( ) ( ) ( , ) ( ) ( , ) ( sin ) ;

( )( ) .
( )

k kf f K d g K d
k k

k k kg f K d g K d q d
k k k

aq
C n d

π

ξ η ξ η η η ξ η η
π π

ξ η ξ η η η ξ η η ξ ξ ζ ζ
π π π

ρτ ρ
ρ −

+ − =

+ − =

=

∫ ∫

∫ ∫ ∫  (38)

The kernels in (38) take the forms
1 2 1 2

11 1 1 2 1 1 1 2
2 1

1 11 2
12 0 1 2 0 1 2 0 1 0 1

1
0 2 0 2

1 2
21 2 1 2

( ) ( )( , ) [2 ( , ) (2 , ) (2 , )];
2 2

( ) 1( , ) {[ ( , ) ( ,1)] [ (2 , ) (2 ,1)]
2

1 [ (2 , ) (2 ,1)]};
2

( )( , ) [ ( , )

k k k k kK I I I
k k k
k kK I I I I

k

I I

k kK I
k

ξ η β β η β η β η

ξ η η β β η β β η β η β

η β η β

ξ η η β β η

− −

−

+ +
= + − −

+
= + − + − − −

− −

+
= − + 2 1 2 2

1 11 1 2
22 1 1 2 1 1 2 1 1

1

11 2
1 1 1 2 1 2

2

1 1(2 , ) (2 , )];
2 2

( )( , ) {2[ ( , ) ( ,1)] [ (2 , )
2

( )(2 ,1)] [ (2 , ) (2 ,1)]};
2

I I

k k kK I I I
k k
k kI I I

k

β η β η

ξ η η η β β η β β η β η

β η β η β

− −

−

− −

+
= − + − + − −

+
− − −

(39)

where
2 2

0 2 2

1 2 2 2 2 2 2

2 2 2 2

2 1 2 2 2 2 2 2

1 ( )( , ) log ;
4 ( )

2( , ) ;
( ) 4

1 4 ( )( , ) ( , )[1 ];
( ) 4

I

I

I I

ρ ξ η
ρ η

ρ ξ η
ρξη

ρ η
ρ ξ µ ξ η

ρ ρ ξ η
ρ η ρ η

ρ ρ ξ η ξ η

+ +
=

+ −

=
+ + −

+ +
= − −

+ + −

(40)

and ,2,1,,,, =ikk ii ββ  are determined according (27), (28).

We note from (38) - (40) that the kernels at 0=ξ  are .2,1,,0),0( == jiK ij η  Besides, the right
part of the second equation in (38) is equal to zero at 0=ξ  then it follows 0)0()0( == gf .

The stress intensity factors (see (32) notation) here are defined by
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0 0 0
44 1 1

1
1

0 0 1/ 2 0
44 1 1

2 0

(1);
2

( ) ( ) .
2

I

II

kK C d l a f
k

kK C n d a g d
k

π

π ξ ξ−

= −

= ∫
(41)

From the last we can see that, firstly, the stress intensity factor IK is not zero, secondly, both
of the stress intensity factors IK  and IIK  are effected by the initial stress (6) 0

22
0
11 SS =  (or

extension/contraction ratio 21 λλ = ) , and thirdly, IK  and IIK  also depend on the distance h
(or the dimensionless distance β ) from the crack to the free of stresses boundary.

When β  tends to the infinity the case of a crack in an infinite material can be obtained. As for
the normal-rapture near the surface crack we will show that the stress intensity factors IK  and

IIK tend the values ∞
IK  and ∞

IIK  (see notation (33)), coincide with those (37) obtained for an
isolated circular crack.

It follows from (39), (40) that under ∞→β   the kernels of the Fredholm integral equations
tend to zero:

.2,1,,0),(lim ==
∞→

jiK ij ηξ
β

(42)

Then after some manipulations we seek

2
2 2

0

( ) 0;

4 ( )( )

f

k d q dg
k d

ξ

ξ

η η η
ξ

π ξ ξ η

∞

∞

=

=
−

∫
(43)

and finally

1 2 2

3/22 2 2
0 0

0;

( ) 2 ( )2 ,
1

I

a

II

K

a a d t t dtK
a a t

η τ η η τ
π πη

∞

∞

=

= =
− −

∫ ∫
(44)

that really coincide with (37) accurate to the notation )()( rr zrττ = .

In the numerical analysis the Boubnov-Galerkin method has been used. Gaussian-quadrature
formulas were utilized for numerical integration. Below we present numerical results for
incompressible elastic solids with the Treloar elastic potential (Treloar L.R.G. (1955)), the
unequal roots case, and with the Bartenev-Khazanovich elastic potential (Bartenev G.M. and
Khazanovich T.N. (1960)), the equal roots case. Results are given for the case of uniform
loading .)( constr ==ττ

Treloar potential
The Treloar elastic potential allows the description of neo-Hookean type solids. The values of
the stress intensity factors ratio ∞

IIII KK /  and ∞
II KK /  versus 1λ  and β  are given in Tables 2

and 3, respectively.
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Table 2

1λ 5.0=β 0.75 1.0 1.25 1.5 2.0 3.0 10.0
0.9000 2.1133 1.1443 1.0517 1.0227 1.0111 1.033 1.0005 1.0000
0.9999 1.1337 1.0613 1.0298 1.0152 1.0081 1.0027 1.0005 1.0000
1.1000 1.0647 1.0377 1.0215 1.0123 1.0071 1.0026 1.0005 1.0000

Table 3

1λ 5.0=β 0.75 1.0 1.25 1.5 2.0 3.0 10.0
0.9000 1.1726 0.1693 0.0723 0.0378 0.0217 0.0085 0.0020 0.0000
0.9999 0.1130 0.0767 0.0458 0.0279 0.0175 0.0075 0.0019 0.0000
1.1000 0.0549 0.0493 0.0361 0.0249 0.0169 0.0060 0.0002 0.0000

Besides, for the values 0.1,75.0,5.0,25.0=β  and 1.25, the dependencies of the stress
intensity factor ratio ∞

IIII KK /  and ∞
II KK /  versus initial elongation (or reduction) 1λ  ( 11 >λ

for tension; 11 <λ  for compression) are shown in Fig.1 and Fig.2, respectively. The curves
have vertical asymptotes corresponding to the values of the critical reduction 1λ  obtained for
this potential in the problem of fracture in compression along a circular crack parallel to the
free boundary of a semiinfinite body (see Nazarenko V.M. (1985)), when the fracture process
is initiated by the local instability mechanism.

Bartenev-Khazanovich potential.
The Bartenev-Khazanovich potential describes some grid polymers behaviour. Variations of
the stress intensity factor ratio ∞

IIII KK /  and ∞
II KK /  with the initial elongation (or reduction)

1λ  for this potential are shown in Figs. 3 and 4, respectively, for the values
0.1,75.0,5.0,25.0=β  and 1.25. We can see that the values of ∞

IIII KK /  and ∞
II KK /  tend to

infinity under 1λ  tends to the values of the critical reduction 1λ  which is determined for this
elastic potential in the problem of fracture in compression along a circular crack parallel to the
free boundary of a semiinfinite body (see Guz’ A.N. and Nazarenko V.M. (1985)).

Isolated crack under torsion.
The axisymmetric boundary problem for the crack (20) of radius a  is formulated for the
upper halfspace 03 ≥y as following (Guz’ A.N. (1992)):

3 3

3

( ), 0 , 0;
0, , 0;

zQ r r a y
u a r y

θ θ

θ

τ= − ≤ < =

= < < +∞ =
(45)

 (we assume that on the crack faces equal and oppositely-directed stresses )(rzθτ− are applied
antisymmetrically with respect to the plane 03 =y ).

The stress intensity factor IIIK  defined by (23) in this case is:
(For the cases both equal 21 nn =  and unequal 21 nn ≠  roots)

.
)(12

0
22

2

∫
−

=
a

z
III

ra
drrr

aa
K θτ

π
(46)
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The stress intensity factor IIIK  in this case also is not depending on the initial stresses
0
22

0
11 SS =   while the crack faces displacements near the crack tip θu  is depending on initial

stresses as well as coefficient 0
3C  in (19).

Near the surface crack under torsion.
The crack of the radius a is situated in the upper halfspace hx −≥3 in the plane 03 =x with the
centre on 3Ox -axis (here 3,2,1, =jx j  is the system of Cartesian coordinates referred to the
non-deformed state). Following  Guz’ A.N, Nazarenko V.M. and Nikonov V.A. (1991), the
axisymmetric boundary problem under initial stresses (6) may be formulated as next:

3 3 3

3 3 3 3
0 1/ 2 0 1/ 2

3 3 3 3 3

( , ) ( ); 0 , 0;
( , ) 0; 0 , ;

( ) , ( ) .

t r z r r a z
t r z r z h
z n x h n h

θ

θ

τ

− −

= − ≤ < = ±

= ≤ < +∞ = −

≡ ≡

(47)

Following then the mathematical procedure generally analogous above mentioned one for the
normal-rupture near the surface crack case we can obtain the Fredholm integral equation of
the second kind like this:

1

0

/ 2
2

0

0 0 1/ 2 0
44 3 3

2 2
3

3 2 2 2 2 2 2
3 3 3

3

1( ) ( , ) ( ) ( ); 0 1; 0 1;

2( ) ( sin )sin ;

2 ( )( ) ;
( )

(2 ) ( )1 1 1( , ) 2 [ log ];
2 (2 ) ( ) (2 ) ( ) (2 ) ( )

(0, ) 0, (0) 0, (0) 0;

M d G

G X a d

rX r
C n d

M

M G

π

ω ξ ξ η ω η η ξ ξ η
π

ξ
ξ ξ ρ ρ ρ

π

τ

β ξ η
ξ η β

ξη β ξ η β ξ η β ξ η

η ω β

−

− = ≤ ≤ ≤ ≤

=

= −

+ −
= + +

+ + + + + −

= = = ≡

∫

∫

0 1/ 2
3( ) ; / .n h aβ β− =

 (48)

The stress intensity factor IIIK  is defining according
,)0,()](2[ 3

2/1lim rtarK
ar

III θπ −=
→

(49)

in our case of the near the surface crack under torsion is

.
2

)1()( 0
3

2/10
3

0
44

ω
πadnCK III

−−= (50)

The stress intensity factor IIIK  is depending on the initial stresses as so as depend on the
dimensionless distance β  from the crack to the free boundary.

As for as the passing to the limit ∞→β  when we can obtain the isolated crack case we have
),()(,0),(lim ξξωηξ

β

GM == ∞

∞→

(51)

and finally

∫∫
−

==∞
a

III
ra
drrr

aa
daaK

0
22

22/

0

2 )(2sin)sin(2 τ
π

ρρρτ
π

π

(52)

coincide with stress intensity factor (46) obtained for isolated crack if assume .)()( rr zθττ ≡
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Below we present numerical results for incompressible elastic solids with the Treloar elastic
potential (Treloar L.R.G. (1955)), the unequal roots case, and with the Bartenev-Khazanovich
elastic potential (Bartenev G.M. and Khazanovich T.N. (1960)), the equal roots case. Results
are given for the case of uniform loading .)( constr ==ττ
The numerical investigation of the integral equation (48) was carried out with Boubnov-
Galerkin method as well as collocation method. In the collocation method the collocation
points coincide with the nodes of Gaussian-quadrature formulae. Both methods gave
practically identical results.
For the Treloar potential the value 3β  and the kernel ),( ηξM is not depend on the initial
stresses as well as function )(ξG . As a result the stress intensity factor IIIK  for this material is
also independent of the initial stresses while the displacement θu  is depending on the initial
stresses. The character of changing of the function )(ξω  in the interval [0, 1] is given in Fig.
5 for the dimensionless distance from crack plane to the free surface 05.0=β and 25.0=β .
The values of )(ξω  are normalized by dimensionless value 10/Cτ , where 10C  is material
constant. Dependence of the stress intensity factor ratio ∞

IIIIII KK /  versus ah /=β is shown in
Fig. 6.
For the Bartenev-Khazanovich potential the stress intensity factor ratio ∞

IIIIII KK /  versus the
initial elongation 1λ  ( 11 <λ ) or reduction ( 11 >λ ) is given in Fig. 7 for dimensionless
distance 05.0=β and 125.0=β . In the case of this potential the stress intensity factor IIIK  is
essentially depending on the initial stresses (initial stress )( 1

0
11

0
11 λSS = or initial

elongation/reduction )( 0
1111 Sλλ = through the elastic potential function).

All above mentioned results for internal penny-shaped cracks were given for the case of the
axial symmetry. As touching general non axis-symmetrical case the reader has an opportunity
to be acquainted with the detailed information concerning isolated penny-shaped internal and
external cracks in the work of Guz’ A.N. (1992). As an example below we will consider one
such a case for the normal-rupture external penny-shaped crack.

External penny-shaped crack
In this subsection we will deal with the isolated cracks only following Guz’ A.N. (1992). We
assume the crack of radius a is situated in the region

0,20, 3 ±=<≤∞<< yra πθ (53)
 (see the notation above).

For the normal-rapture crack the general non axis-symmetric boundary problem for the upper
halfspase 03 ≥y is formulated as

3 3 3 3

33 3 3 3

0, 0, 0 0 , 0 2 , 0;
( , ), 0, 0 , 0 2 , 0.

r

z r

u Q Q for r a y
Q r Q Q for a r y

θ

θ

θ π

σ θ θ π

= = = ≤ < ≤ < =

= − = = < < ∞ ≤ < =
 (54)

Here ),( θσ rz is the normal load density which applied symmetric regarding the plane .03 =y
This density can be expressed in the Fourier series form

∑
∞

=

=
0

.cos)(),(
n

nz nrpr θθσ (55)



8. Uluslar Aras  K lma Konferans  Bildiriler Kitab      7 – 9 Kas m 2007
Prooceedings of 8th International Fracture Conference  7 – 9 November 2007

Istanbul/TURKEY

692

For the equal 21 nn = and unequal 21 nn ≠ roots case the stress intensity factor IK is

.]
)(

[cos2),()](2[
22

1

0

2/1
33

2/1lim dr
ar
rprnarQarK

a

n
n

n

n

ar
I ∫∑

∞ −∞

=

−

→ −
=−= θ

π
θπ  (56)

For the axisymmetrical case we may assume in (56) ,3,2,1,0)(),()(0 L=== nrprrp nzσ so
we may obtain for this case

∫
∞

−
=

a

z
I

ar
drrr

a
K

22

)(2 σ
π

(57)

The axisymmetric boundary problem for the isolated crack under radial shear is formulated
for the upper halfspace 03 ≥y as

33 3

33 3 3

0, 0 0 , 0;
0, ( ) , 0 .

r

r zr

u Q for r a y
Q Q r for a r yτ

= = ≤ < =

= = − < < ∞ =
(58)

The value of the stress intensity factor IIK in this case is

.)(2)()](2[
223

2/1lim ∫
∞

→ −
=−=

a

zr
r

ar
II

ar
drr

a
arQarK τ

π
π (59)

Further, the axisymmetric boundary problem for the isolated crack under torsion is
formulated for the upper halfspace 03 ≥y as

3

3 3

0 0 , 0;
( ) , 0z

u for r a y
Q r for a r y

θ

θ θτ

= ≤ < =

= − < < ∞ =
(60)

The value of the stress intensity factor IIIK in this case is

.
)(2)()](2[

223
2/1lim ∫

∞

→ −
=−=

a

z

ar
III

ar
drr

a
arQarK θ

θ

τ
π

π (61)

Internal isolated elliptical crack
Normal-rapture crack
Following Guz’ A.N. (1992) and Guz’ A.N. and Kluchnikov Yu.V. (1984) we assume that the
elliptical crack is located in the 03 =y  plane

.sin,cos,0,1 2132

2
2

2

2
1 φφ ayayy

b
y

a
y

==±=<+ (62)

Here φ  is parameter angle; a  and b  is the ellipse semi-major axis the ellipse semi-minor axis
accordingly. The symmetric form of the elliptical coordinates ),,( ηξξ  (see Kassir M.K. and
Sih G.C. (1975)) will be used so that in the crack plane 03 =y  the value 0=ξ  means the
internal points in the ellipse while the value 0=η  means the external points. The boundary
problem for the upper halfspace 03 ≥y  has the form

33 1 2 31 32

3 31 32

( , ), 0, 0 0;
0, 0, 0 0.

Q p y y Q Q for
u Q Q for

ξ

η

= = = =

= = = =
(63)

Normal load ),( 21 yyp  is applied symmetrically regarding the 03 =y  plane.

For the simplest case of constant load
constpyyp == 0021 ),( (64)
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the stress intensity factor IK  is defining as

,cossin,
)(

)(;2 22224/100
33

0
lim φφ

π
φπ ba

a
b

kE
pKQrK I

r
I +≡ΦΦ==

→

 (65)

where the value r  is the distance from crack contour along the normal direction and
22 /1),( abkkE −=  is the elliptical integral of the second kind.

Crack under shear
For the elliptical crack located as (62) under shear the boundary problem for the upper
halfspace 03 ≥y  is

33 31 1 1 2 32 2 1 2

33 1 2

0, ( , ), ( , ) 0;
0, 0, 0 0.

Q Q q y y Q q y y for
Q u u for

ξ

η

= = = =

= = = =
(66)

The tangent loads 1q  and 2q  are applied to the crack faces antisymmetrically regarding the
03 =y  plane.

In the case of the uniform shear with density 0q  acting at an angle β  with an ellipse semi-
major axis the stress intensity factors IIK  and IIIK  are

3/ 2 1/ 4
3 1

0

3/ 2 1/ 4
3 1 1

0

; ( ) 4 ( ) ( sin cos );

; ( ) 4 (1 )( ) ( sin cos ).

lim
lim

II n II
r

III t III
r

K Q K ab aC bB

K Q K ab aB bA

φ π µ φ φ

φ π µ ν φ φ

− −

→

− −

→

= = Φ

= = − − Φ −
 (67)

Here 1µ  and 1ν  are the values depending on the material properties and the initial stresses;
sub indices n  and t  denote the direction along external normal and tangent to the ellipse; and

BC, are calculated as
2 2 2 2 1

0 1 1
1

2 2 2 2 2 1
0 1 1

1

1 cos [( ) ( ) (1 ) ( )] ;
4
1 sin {[ (1 )] ( ) (1 ) ( )} ,

4

B ab k q k E k k K k

C ab k q k k E k k K k

β ν ν
µ

β ν ν
µ

−

−

= − + −

= + − − −
(68)

where 22 /1 abk −=  and )(),( kEkK  are the elliptical integrals of the first and second kind
respectively.

As the formulae (67), (68) show for the elliptical crack under shear the stress intensity factors
IIK  and IIIK  for the longitudinal and lateral shear are depending on the initial stresses.

Conclusion

The above results as well as some results of Guz’ A.N. (1992) not covered in this paper allow
to make the following conclusions.

I. About the resonance  type phenomenon at the approach to the critical value of the initial
stresses in compression.
The of the stress intensity factors increase abruptly when the compressive initial stresses (or
the initial reduction ratios) tends to the values corresponding to the local instability loss  in
compression for the body of the same geometry (i.e. for example for a above mentioned near
the surface crack it means the local loss of stability of a semiinfinite solid containing a near
the surface crack under the acting of the compressive initial stresses, etc.) .
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II. Singularity type in stresses at the crack tip under initial stresses.
The order of singularity of the stress redistribution near the tip of the crack coincides with
analogous result of the classical linear mechanics of brittle fracture for the all cases examined.

III. Influence of compression (reduction) and extension (elongation) on the stress intensity
factors.
As a rule compression in the initial stresses (like above mentioned 00

11 <S ) or reduction in the
initial reduction ratio (like )11 <λ  leads to the increase in absolute values of the stress
intensity factors. The exception of this rule is the case of combine loading (i.e. for example
the crack under coactions of the longitudinal and lateral shear, etc.), when one of the stress
intensity factors can increase while the other can decrease at the same time.

IV. Isolated cracks.
As a rule for the ‘pure’ loading (i.e. under acting of the ‘pure’ normal load for the normal-
rapture crack, ‘pure’ longitudinal shear loading for the crack under longitudinal shear, etc.)
the only stress intensity factor not equal zero is not depending on the initial stresses. While
the displacements of the crack faces as well as coefficients in the Griffith-Irwin fracture
criteria (like 3,2,1,0 =iCi  in (19)) are depending on the initial stresses.

In the case of the combine loading or when the ‘pure’ loading is impossible due to the crack
shape (for example see the elliptic crack under shear) the stress intensity factors are
depending on the initial stresses.

V. Near the surface cracks.
Similar to the classical case (with absence of initial stress) the presence of a free boundary in
a solid with initial stress as a rule leads to the appearance of two nontrivial stress intensity
factors even for the ‘pure’ loading (see above). For example, in the case of normal-rapture
penny-shaped crack both stress intensity factors IK  and IIK  are not equal zero.

The stress intensity factors are depending on the initial stresses (it seems the only exclusion
gives the penny-shaped crack under ‘pure’ torsion for the Treloar elastic potential due to
specific material properties in this case).

When the distance between the crack plane and the free surface tends to infinity the obtained
results fully coincides with the results for the isolated crack.

VI. When the initial stresses are absent.
When we assume the initial stresses 0

ijS  are absent all the above mentioned results are
transformed into the classical results for a solid without initial stresses (then we also assume
that the stress tensors like above mentioned ijQ   or ijt to be the Cauchy’s stress tensor ijσ  in
the classical theory of elasticity).
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